Patents by Inventor Cheng-Kang Hu

Cheng-Kang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152238
    Abstract: In an embodiment, a system includes a profiler configured to detect variations along a surface of a semiconductor stage; and a jig configured to move the profiler along an axis over the semiconductor stage.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Kang Hu, Hsu-Shui Liu, Jiun-Rong Pai, Shou-Wen Kuo, Sheng-Hsiang Chuang, Cheng-Hung Chen
  • Patent number: 11120539
    Abstract: A method for scanning and analyzing a surface, the method comprising: receiving a piece of equipment with a target surface for inspection; receiving an input from a user; determining at least one scan parameter based on the user input; scanning the target surface using an optical detector in accordance with the at least one scan parameter; generating an image of the target surface; correcting the image of the target surface to remove at least one undesired feature to generate a corrected image based on the at least one scan parameter; and analyzing the corrected image to determine at least one geometric parameter of the target surface.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Hsiang Chuang, Jiao-Rou Liao, Cheng-Kang Hu, Shou-Wen Kuo, Jiun-Rong Pai, Hsu-Shui Liu
  • Publication number: 20210249282
    Abstract: An apparatus and an operating method for automated wafer carrier handling are provided. The apparatus includes a base frame and an engaging mechanism disposed on the base frame. The engaging mechanism includes a controller and an active expansion component moveably coupled to the base frame and controlled by the controller to perform a reciprocating movement relative to the base frame. The active expansion component is driven by the controller to pass through the base frame to be engaged with a top flange mounted on the wafer carrier.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 12, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ren-Hau Wu, Cheng-Lung Wu, Jiun-Rong Pai, Cheng-Kang Hu
  • Publication number: 20210242043
    Abstract: An apparatus and method for debonding a pair of bonded wafers are disclosed herein. In some embodiments, the debonding apparatus, comprises: a wafer chuck having a preset maximum lateral dimension and configured to rotate the pair of bonded wafers attached to a top surface of the wafer chuck, a pair of circular plate separating blades including a first separating blade and a second separating blade arranged diametrically opposite to each other at edges of the pair of bonded wafers, wherein the first and the second separating blades are inserted between a first and a second wafers of the pair of bonded wafers, and at least two pulling heads configured to pull the second wafer upwardly so as to debond the second wafer from the first wafer.
    Type: Application
    Filed: December 2, 2020
    Publication date: August 5, 2021
    Inventors: Cheng-Fei Yu, Chang-Chen TSAO, Ting-Yau Shiu, Cheng-Kang Hu, Hsu-Shui Liu, Jiun-Rong Pai
  • Patent number: 10971386
    Abstract: A method for positioning a mobile device relative to a stationary device in a semiconductor manufacturing environment is disclosed. The method includes detecting a target affixed to the stationary device at a target location, wherein the target location corresponds to a location of the target relative to a reference point on the stationary device, determining a first position coordinate offset value based upon detecting the target, and moving the mobile device, using the first position coordinate offset value, relative to train the mobile device to move relative to the stationary device for the stationary device to performing a semiconductor manufacturing operation.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Yan-Han Chen, Cheng-Kang Hu, Ren-Hau Wu, Cheng-Hung Chen, Feng-Kuang Wu, Hsu-Shui Liu, Jiun-Rong Pai, Shou-Wen Kuo
  • Publication number: 20210082718
    Abstract: A method for positioning a mobile device relative to a stationary device in a semiconductor manufacturing environment is disclosed. The method includes detecting a target affixed to the stationary device at a target location, wherein the target location corresponds to a location of the target relative to a reference point on the stationary device, determining a first position coordinate offset value based upon detecting the target, and moving the mobile device, using the first position coordinate offset value, relative to train the mobile device to move relative to the stationary device for the stationary device to performing a semiconductor manufacturing operation.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Inventors: Yan-Han CHEN, Cheng-Kang HU, Ren-Hau WU, Cheng-Hung CHEN, Feng-Kuang WU, Hsu-Shui LIU, Jiun-Rong PAI, Shou-Wen KUO
  • Patent number: 10889097
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: January 12, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20200343115
    Abstract: An apparatus for inspecting wafer carriers is disclosed. In one example, the apparatus includes: a housing; a load port; a robot arm inside the housing; and a processor. The load port is configured to load a wafer carrier into the housing. The robot arm is configured to move a first camera connected to the robot arm. The first camera is configured to capture a plurality of images of the wafer carrier. The processor is configured to process the plurality of images to inspect the wafer carrier.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Cheng-Kang HU, Shou-Wen KUO, Sheng-Hsiang CHUANG, Jiun-Rong PAI, Hsu-Shui LIU
  • Patent number: 10714364
    Abstract: An apparatus for inspecting wafer carriers is disclosed. In one example, the apparatus includes: a housing having an opening on a wall of the housing; a load port outside the housing; a robot arm inside the housing; and a processor. The load port is coupled to the wall and configured to load a wafer carrier for inspection. The robot arm is configured to move a first camera connected to the robot arm. The first camera is configured to capture a plurality of images of the wafer carrier. The processor is configured to process the plurality of images to inspect the wafer carrier.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Kang Hu, Shou-Wen Kuo, Sheng-Hsiang Chuang, Jiun-Rong Pai, Hsu-Shui Liu
  • Publication number: 20200161161
    Abstract: Apparatus and methods for handling semiconductor part carriers are disclosed. In one example, an apparatus for handling semiconductor part carriers is disclosed. The apparatus includes a mechanical arm and an imaging system coupled to the mechanical arm. The mechanical arm is configured for holding a semiconductor part carrier. The imaging system is configured for automatically locating a goal position on a surface onto which the semiconductor part carrier is to be placed.
    Type: Application
    Filed: October 10, 2019
    Publication date: May 21, 2020
    Inventors: Ren-Hau WU, Yan-Han CHEN, Cheng-Kang HU, Feng-Kuang WU, Hsu-Shui LIU, Jiun-Rong PAI
  • Publication number: 20200108592
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 9, 2020
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20200110415
    Abstract: In an embodiment a system includes: an automated vehicle configured to traverse a first predetermined path; and a sensor system located on the automated vehicle, the sensor system configured to detect a vertical obstacle along the first predetermined path along one or two floorboards ahead of the automated vehicle, wherein the automated vehicle is configured to traverse a second predetermined path in response to detecting the vertical obstacle.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 9, 2020
    Inventor: Cheng-Kang HU
  • Patent number: 10569520
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates diametrically opposite to each other. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly placed above the pair of bonded substrates and configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20190244343
    Abstract: A method for scanning and analyzing a surface, the method comprising: receiving a piece of equipment with a target surface for inspection; receiving an input from a user; determining at least one scan parameter based on the user input; scanning the target surface using an optical detector in accordance with the at least one scan parameter; generating an image of the target surface; correcting the image of the target surface to remove at least one undesired feature to generate a corrected image based on the at least one scan parameter; and analyzing the corrected image to determine at least one geometric parameter of the target surface.
    Type: Application
    Filed: November 29, 2018
    Publication date: August 8, 2019
    Inventors: Sheng-Hsiang CHUANG, Becky LIAO, Cheng-Kang HU, Shou-Wen KUO, Jiun-Rong PAI, Hsu-Shui LIU
  • Publication number: 20190164793
    Abstract: In an embodiment, a system includes a profiler configured to detect variations along a surface of a semiconductor stage; and a jig configured to move the profiler along an axis over the semiconductor stage.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 30, 2019
    Inventors: Cheng-Kang HU, Hsu-Shui LIU, Jiun-Rong PAI, Shou-Wen KUO, Sheng-Hsiang CHUANG, Cheng-Hung CHEN
  • Publication number: 20190118522
    Abstract: The present disclosure relates to a debonding apparatus. In some embodiments, the debonding apparatus comprises a wafer chuck configured to hold a pair of bonded substrates on a chuck top surface. The debonding apparatus further comprises a pair of separating blades including a first separating blade and a second separating blade placed at edges of the pair of bonded substrates diametrically opposite to each other. The first separating blade has a first thickness that is smaller than a second thickness of the second separating blade. The debonding apparatus further comprises a flex wafer assembly placed above the pair of bonded substrates and configured to pull the pair of bonded substrates upwardly to separate a second substrate from a first substrate of the pair of bonded substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Application
    Filed: December 14, 2018
    Publication date: April 25, 2019
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20190067057
    Abstract: An apparatus for inspecting wafer carriers is disclosed. In one example, the apparatus includes: a housing having an opening on a wall of the housing; a load port outside the housing; a robot arm inside the housing; and a processor. The load port is coupled to the wall and configured to load a wafer carrier for inspection. The robot arm is configured to move a first camera connected to the robot arm. The first camera is configured to capture a plurality of images of the wafer carrier. The processor is configured to process the plurality of images to inspect the wafer carrier.
    Type: Application
    Filed: April 27, 2018
    Publication date: February 28, 2019
    Inventors: Cheng-Kang Hu, Shau-Wen Kuo, Sheng-Hsiang Chuang, Jiun-Rong Pai, Hsu-Shui Liu
  • Patent number: 10155369
    Abstract: The present disclosure relates to a method for debonding a pair of bonded substrates. In the method, a debonding apparatus is provided comprising a wafer chuck, a flex wafer assembly, and a set of separating blades. The pair of bonded substrates is placed upon the wafer chuck so that a first substrate of the bonded substrate pair is in contact with a chuck top surface. The flex wafer assembly is placed above the bonded substrate pair so that its first surface is in contact with an upper surface of a second substrate of the bonded substrate pair. A pair of separating blades having different thicknesses is inserted between the first and second substrates from edges of the pair of bonded substrates diametrically opposite to each other while the second substrate is concurrently pulled upward until the flex wafer assembly flexes the second substrate from the first substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Publication number: 20180147825
    Abstract: The present disclosure relates to a method for debonding a pair of bonded substrates. In the method, a debonding apparatus is provided comprising a wafer chuck, a flex wafer assembly, and a set of separating blades. The pair of bonded substrates is placed upon the wafer chuck so that a first substrate of the bonded substrate pair is in contact with a chuck top surface. The flex wafer assembly is placed above the bonded substrate pair so that its first surface is in contact with an upper surface of a second substrate of the bonded substrate pair. A pair of separating blades having different thicknesses is inserted between the first and second substrates from edges of the pair of bonded substrates diametrically opposite to each other while the second substrate is concurrently pulled upward until the flex wafer assembly flexes the second substrate from the first substrate. By providing unbalanced initial torques on opposite sides of the bonded substrate pair, edge defects and wafer breakage are reduced.
    Type: Application
    Filed: June 5, 2017
    Publication date: May 31, 2018
    Inventors: Chang-Chen Tsao, Kuo Liang Lu, Ru-Liang Lee, Sheng-Hsiang Chuang, Yu-Hung Cheng, Yeur-Luen Tu, Cheng-Kang Hu
  • Patent number: 9191071
    Abstract: A broadband power line network device includes a printed circuit board, a power converter, a network control chip, a network connector, and an Ethernet signal coupling device. The printed circuit board includes a primary layout region and a secondary layout region. The primary layout region and the secondary layout region are separated from each other by a first distance. The power converter includes a pair of power-receiving terminals for receiving an AC voltage, thereby converting the AC voltage into a DC voltage. The network control chip is disposed on the primary layout region for receiving the DC voltage. The network connector is disposed on the secondary layout region for transmitting or receiving an external network signal. The Ethernet signal coupling device is arranged between the primary layout region and the secondary layout region.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: November 17, 2015
    Assignee: ALPHA NETWORKS INC.
    Inventors: Hsiu-Wu Wu, Cheng-Kang Hu, Tzu-Nan Tai