Patents by Inventor Cheng Tang Huang

Cheng Tang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096498
    Abstract: A method for evaluating a risk of a subject getting a specific disease includes steps of: storing a reference database that contains original parameter sets; selecting target alleles from an SNP profile derived from genome sequencing data of a subject; selecting target parameter sets from among the original parameter sets; calculating, for each of the target parameter sets, a race factor based on a global risk allele frequency and a group-specific risk allele frequency included in the target parameter set; calculating a genetic factor based on statistics, global reference allele frequencies, the race factors for the target parameter sets, and numbers of chromosomes in homologous chromosome pairs included in the target parameter sets; calculating a citation factor based on numbers of citation times included in the target parameter sets; and calculating a risk score based on the genetic factor and the citation factor.
    Type: Application
    Filed: August 28, 2023
    Publication date: March 21, 2024
    Inventors: Yi-Ting CHEN, Sing-Han HUANG, Ching-Yung LIN, Xiang-Yu LIN, Cheng-Tang WANG, Raksha NANDANAHOSUR RAMESH, Pei-Hsin CHEN
  • Patent number: 9196553
    Abstract: A manufacturing method of semiconductor package structure includes: providing a first dielectric layer having multiple through holes; providing a second dielectric layer having multiple conductive vias and a chip-containing opening; laminating the second dielectric layer onto the first dielectric layer; disposing a chip in the chip-containing opening and adhering a rear surface of the chip onto the first dielectric layer exposed by the chip-containing opening; forming a redistribution circuit layer on the second dielectric layer wherein a part of the redistribution circuit layer extends from the second dielectric layer onto an active surface of the chip and the conductive vias so that the chip electrically connects the conductive vias through the partial redistribution circuit layer; forming multiple solder balls on the first dielectric layer wherein the solder balls are in the through holes and electrically connect the chip through the conductive vias and the redistribution circuit layer.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: November 24, 2015
    Assignee: ChipMOS Technologies Inc.
    Inventors: Tsung-Jen Liao, Mei-Fang Peng, Cheng-Tang Huang
  • Publication number: 20130049197
    Abstract: A manufacturing method of semiconductor package structure includes: providing a first dielectric layer having multiple through holes; providing a second dielectric layer having multiple conductive vias and a chip-containing opening; laminating the second dielectric layer onto the first dielectric layer; disposing a chip in the chip-containing opening and adhering a rear surface of the chip onto the first dielectric layer exposed by the chip-containing opening; forming a redistribution circuit layer on the second dielectric layer wherein a part of the redistribution circuit layer extends from the second dielectric layer onto an active surface of the chip and the conductive vias so that the chip electrically connects the conductive vias through the partial redistribution circuit layer; forming multiple solder balls on the first dielectric layer wherein the solder balls are in the through holes and electrically connect the chip through the conductive vias and the redistribution circuit layer.
    Type: Application
    Filed: January 18, 2012
    Publication date: February 28, 2013
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Tsung-Jen Liao, Mei-Fang Peng, Cheng-Tang Huang
  • Publication number: 20130049198
    Abstract: A method of manufacturing a semiconductor package structure is provided. A chip is provided. An active surface of the chip is disposed on a carrier. A molding compound is formed on the carrier with a metal layer disposed thereon. The metal layer has an upper and lower surface, multiple cavities formed on the upper surface and multiple protrusions formed on the lower surface and corresponding to the cavities. The protrusions are embedded in the molding compound. The metal layer is patterned to form multiple pads on a portion of the molding compound. The carrier and the molding compound are separated. Multiple through holes are formed on the molding compound exposing the protrusions. A redistribution layer is formed on the molding compound and the active surface of the chip. Multiple solder balls are formed on the redistribution layer. A portion of the solder balls are correspondingly disposed to the pads.
    Type: Application
    Filed: February 6, 2012
    Publication date: February 28, 2013
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Tsung-Jen Liao, Cheng-Tang Huang, Mei-Fang Peng
  • Publication number: 20120309186
    Abstract: A conductive structure for a semiconductor integrated circuit and method for forming the conductive structure are provided. The semiconductor integrated circuit has a pad and a passivation layer partially covering the pad to define a first opening portion having a first lateral size. The conductive structure electrically connects to the pad via the first opening portion. The conductive structure comprises a support layer defining a second opening portion. A conductor is formed in the second opening portion to serve as a bump having a planar top surface.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 6, 2012
    Inventors: J. B. CHYI, Cheng Tang HUANG
  • Patent number: 8319337
    Abstract: A conductive structure for a semiconductor integrated circuit and method for forming the conductive structure are provided. The semiconductor integrated circuit has a pad and a passivation layer partially covering the pad to define a first opening portion having a first lateral size. The conductive structure electrically connects to the pad via the first opening portion. The conductive structure comprises a support layer defining a second opening portion. A conductor is formed in the second opening portion to serve as a bump having a planar top surface.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: November 27, 2012
    Assignee: Chipmos Technologies Inc.
    Inventors: Chung-Pang Chi, Cheng Tang Huang
  • Patent number: 8274150
    Abstract: A chip bump structure is formed on a substrate. The substrate includes at least one contact pad and a dielectric layer. The dielectric layer has at least one opening. The at least one opening exposes the at least one contact pad. The chip bump structure includes at least one elastic bump, at least one first metal layer, at least one second metal layer, and at least one solder ball. The at least one elastic bump covers a central portion of the at least one contact pad. The at least one first metal layer covers the at least one elastic bump. The at least one first metal layer has a portion of the at least one contact pad. The portion of the at least one contact pad is not overlaid by the at least one elastic bump. The at least one second metal layer is formed on a portion of the at least one first metal layer. The portion of the at least one first metal layer is located on the top of the at least one elastic bump. The at least one solder ball is formed on the at least one second metal layer.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 25, 2012
    Assignee: Chipmos Technologies Inc.
    Inventor: Cheng Tang Huang
  • Patent number: 8211789
    Abstract: A manufacturing method of a bump structure having a reinforcement member is disclosed. First, a substrate including pads and a passivation layer is provided. The passivation layer has first openings, and each first opening exposes a portion of the corresponding pad respectively. Next, an under ball metal (UBM) material layer is formed on the substrate to cover the passivation layer and the pads exposed by the passivation layer. Bumps are formed on the UBM material layer and the lower surface of each bump is smaller than that of the opening. Each reinforcement member formed on the UBM material layer around each bump contacts with each bump, and the material of the reinforcement member is a polymer. The UBM material layer is patterned to form UBM layers and the lower surface of each UBM layer is larger than that of each corresponding opening. Hence, the bump has a planar upper surface.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: July 3, 2012
    Assignee: ChipMOS Technologies Inc.
    Inventor: Cheng-Tang Huang
  • Publication number: 20110291273
    Abstract: A chip bump structure is formed on a substrate. The substrate includes at least one contact pad and a dielectric layer. The dielectric layer has at least one opening. The at least one opening exposes the at least one contact pad. The chip bump structure includes at least one elastic bump, at least one first metal layer, at least one second metal layer, and at least one solder ball. The at least one elastic bump covers a central portion of the at least one contact pad. The at least one first metal layer covers the at least one elastic bump. The at least one first metal layer has a portion of the at least one contact pad. The portion of the at least one contact pad is not overlaid by the at least one elastic bump. The at least one second metal layer is formed on a portion of the at least one first metal layer. The portion of the at least one first metal layer is located on the top of the at least one elastic bump. The at least one solder ball is formed on the at least one second metal layer.
    Type: Application
    Filed: May 10, 2011
    Publication date: December 1, 2011
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventor: CHENG TANG HUANG
  • Publication number: 20110212615
    Abstract: A manufacturing method of a bump structure having a reinforcement member is disclosed. First, a substrate including pads and a passivation layer is provided. The passivation layer has first openings, and each first opening exposes a portion of the corresponding pad respectively. Next, an under ball metal (UBM) material layer is formed on the substrate to cover the passivation layer and the pads exposed by the passivation layer. Bumps are formed on the UBM material layer and the lower surface of each bump is smaller than that of the opening. Each reinforcement member formed on the UBM material layer around each bump contacts with each bump, and the material of the reinforcement member is a polymer. The UBM material layer is patterned to form UBM layers and the lower surface of each UBM layer is larger than that of each corresponding opening. Hence, the bump has a planar upper surface.
    Type: Application
    Filed: May 11, 2011
    Publication date: September 1, 2011
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventor: Cheng-Tang Huang
  • Patent number: 7969003
    Abstract: A manufacturing method of a bump structure having a reinforcement member is disclosed. First, a substrate including pads and a passivation layer is provided. The passivation layer has first openings, and each first opening exposes a portion of the corresponding pad respectively. Next, an under ball metal (UBM) material layer is formed on the substrate to cover the passivation layer and the pads exposed by the passivation layer. Bumps are formed on the UBM material layer and the lower surface of each bump is smaller than that of the opening. Each reinforcement member formed on the UBM material layer around each bump contacts with each bump, and the material of the reinforcement member is a polymer. The UBM material layer is patterned to form UBM layers and the lower surface of each UBM layer is larger than that of each corresponding opening. Hence, the bump has a planar upper surface.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 28, 2011
    Assignee: ChipMOS Technologies Inc.
    Inventor: Cheng-Tang Huang
  • Patent number: 7888172
    Abstract: A chip package structure is provided, includes a chip that having a plurality of pads and an adhesive layer on the back side; an encapsulated structure is covered around the four sides of the chip to expose the pads, and the through holes is formed within the encapsulated structure; a patterned first protective layer is formed on the portion surface of encapsulated structure, the portion of active surface of the chips, and the pads of the chip and the through holes are to be exposed; a metal layer is formed on the portion surface of the patterned first protective layer and formed to electrically connect the pads and to fill with the through holes; the patterned second protective layer is formed on the patterned first protective layer and the portion of metal layer, and the portion surface of metal layer is to be exposed; a patterned UBM layer is formed on the exposed surface of the metal layer and the portion surface of the patterned second protective layer; and the conductive elements is formed on the patter
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventor: Cheng-Tang Huang
  • Patent number: 7879651
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for forming the structure are provided. The dielectric layer of the packaging conductive structure partially overlays the metallic layer of the semiconductor substrate and has a receiving space. The lifting layer and conductive layer are formed in the receiving space, wherein the conductive layer extends for connection to a bump. The lifting layer is partially connected to the dielectric layer. As a result, the conductive layer can be stably deposited on the edge of the dielectric layer for enhancing the reliability of the packaging conductive structure.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: February 1, 2011
    Assignee: Chipmos Technologies Inc.
    Inventor: Cheng Tang Huang
  • Publication number: 20110003431
    Abstract: A die rearrangement package structure is provided and includes a die; an encapsulated structure is covered around the four sides of the die to expose the active surface and the reverse side of the die; a patterned protective layer is formed on the encapsulated structure and the active surface of the die, and the pads is to be exposed; one end of fan-out patterned metal layer is electrically connected the pads and other end is extended to cover the patterned protective layer; patterned second protective layer is provided to cover the patterned metal layer to expose the portions surface of the patterned metal layer; patterned UBM layer is formed on the exposed surface of the patterned metal layer; and a conductive component is formed on the patterned UBM layer, and electrically connected the patterned metal layer.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Inventor: Cheng-Tang HUANG
  • Patent number: 7656020
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for forming the structure are provided. The dielectric layer of the packaging conductive structure partially overlays the metallic layer of the semiconductor substrate and has a receiving space. The lifting layer and conductive layer are formed in the receiving space, wherein the conductive layer extends for connection to a bump. The lifting layer is partially connected to the dielectric layer. As a result, the conductive layer can be stably deposited on the edge of the dielectric layer for enhancing the reliability of the packaging conductive structure.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: February 2, 2010
    Assignee: Chipmos Technologies, Inc.
    Inventor: Cheng Tang Huang
  • Publication number: 20090302448
    Abstract: A chip package structure is provided, includes a chip that having a plurality of pads and an adhesive layer on the back side; an encapsulated structure is covered around the four sides of the chip to expose the pads, and the through holes is formed within the encapsulated structure; a patterned first protective layer is formed on the portion surface of encapsulated structure, the portion of active surface of the chips, and the pads of the chip and the through holes are to be exposed; a metal layer is formed on the portion surface of the patterned first protective layer and formed to electrically connect the pads and to fill with the through holes; the patterned second protective layer is formed on the patterned first protective layer and the portion of metal layer, and the portion surface of metal layer is to be exposed; a patterned UBM layer is formed on the exposed surface of the metal layer and the portion surface of the patterned second protective layer; and the conductive elements is formed on the patter
    Type: Application
    Filed: December 9, 2008
    Publication date: December 10, 2009
    Inventor: Cheng-Tang Huang
  • Publication number: 20090302465
    Abstract: A die rearrangement package structure is provided and includes a die; an encapsulated structure is covered around the four sides of the die to expose the active surface and the reverse side of the die; a patterned protective layer is formed on the encapsulated structure and the active surface of the die, and the pads is to be exposed; one end of fan-out patterned metal layer is electrically connected the pads and other end is extended to cover the patterned protective layer; patterned second protective layer is provided to cover the patterned metal layer to expose the portions surface of the patterned metal layer; patterned UBM layer is formed on the exposed surface of the patterned metal layer; and a conductive component is formed on the patterned UBM layer, and electrically connected the patterned metal layer.
    Type: Application
    Filed: December 9, 2008
    Publication date: December 10, 2009
    Inventor: Cheng-Tang HUANG
  • Publication number: 20080197467
    Abstract: A conductive structure for a semiconductor integrated circuit and method for forming the conductive structure are provided. The semiconductor integrated circuit has a pad and a passivation layer partially covering the pad to define a first opening portion having a first lateral size. The conductive structure electrically connects to the pad via the first opening portion. The conductive structure comprises a support layer defining a second opening portion. A conductor is formed in the second opening portion to serve as a bump having a planar top surface.
    Type: Application
    Filed: September 13, 2007
    Publication date: August 21, 2008
    Inventors: J.B. Chyi, Cheng Tang Huang
  • Publication number: 20080197475
    Abstract: A packaging conductive structure for a semiconductor substrate and a method for forming the structure are provided. The dielectric layer of the packaging conductive structure partially overlays the metallic layer of the semiconductor substrate and has a receiving space. The lifting layer and conductive layer are formed in the receiving space, wherein the conductive layer extends for connection to a bump. The lifting layer is partially connected to the dielectric layer. As a result, the conductive layer can be stably deposited on the edge of the dielectric layer for enhancing the reliability of the packaging conductive structure.
    Type: Application
    Filed: July 2, 2007
    Publication date: August 21, 2008
    Inventor: Cheng Tang Huang
  • Publication number: 20080185716
    Abstract: A manufacturing method of a bump structure having a reinforcement member is disclosed. First, a substrate including pads and a passivation layer is provided. The passivation layer has first openings, and each first opening exposes a portion of the corresponding pad respectively. Next, an under ball metal (UBM) material layer is formed on the substrate to cover the passivation layer and the pads exposed by the passivation layer. Bumps are formed on the UBM material layer and the lower surface of each bump is smaller than that of the opening. Each reinforcement member formed on the UBM material layer around each bump contacts with each bump, and the material of the reinforcement member is a polymer. The UBM material layer is patterned to form UBM layers and the lower surface of each UBM layer is larger than that of each corresponding opening. Hence, the bump has a planar upper surface.
    Type: Application
    Filed: August 9, 2007
    Publication date: August 7, 2008
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventor: Cheng-Tang Huang