Patents by Inventor Cheng-Tse Tang

Cheng-Tse Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11994717
    Abstract: A method includes: determining a first material and a second material of a photonic waveguide for propagating light, the photonic waveguide having a first section and a second section arranged in a first layer and a second layer, respectively, of the photonic waveguide; determining a spacing between the first layer and the second layer; determining a parameter set of a crosstalk reduction structure, according to the spacing, the first material and a wavelength of the light, to cause insertion losses of the first section and the second section to be lower than a predetermined threshold; and forming the first and second sections with the first and second materials, respectively, the first section having the crosstalk reduction structure overlapping the second section.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ming Yang Chung, Chewn-Pu Jou, Stefan Rusu, Cheng-Tse Tang
  • Patent number: 11977249
    Abstract: An optical device is provided. The optical device includes a ring waveguide and a bus waveguide. The ring waveguide includes a coupling region. The bus waveguide is disposed adjacent to and spaced apart from the coupling region of the ring waveguide. The bus waveguide includes a coupling structure corresponding to the coupling region.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Cheng-Tse Tang, Chewn-Pu Jou, Lan-Chou Cho, Ming Yang Jung, Tai-Chun Huang
  • Patent number: 11953720
    Abstract: The present disclosure provides a semiconductor device, a photonic circuit, and a method for adjusting a resonant wavelength of an optical modulator. The semiconductor device includes a substrate, a first waveguide disposed on the substrate, and a second waveguide disposed on the substrate and spaced apart from the first waveguide with a first distance. In addition, the second waveguide includes a first electrical coupling portion having a first type doping, a second electrical coupling portion having a second type doping, and an optical coupling portion disposed between the first electrical coupling portion and the second electrical coupling portion, wherein the second waveguide is configured to receive a first voltage through the first electrical coupling portion and the second electrical coupling portion to decrease a resonant wavelength of the second waveguide.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Lan-Chou Cho, Chewn-Pu Jou, Cheng-Tse Tang, Stefan Rusu
  • Publication number: 20240069276
    Abstract: A method includes: receiving a substrate; and forming an edge coupler on the substrate, the edge coupler configured to receive light. The forming includes: depositing a first edge coupling member extending in a first direction in a first layer over the substrate; and depositing a second edge coupling member extending in the first direction in a second layer over the first layer. Each of the first and second edge coupling members has a width measured in a second direction monotonically non-decreasing in the first direction. One of the first and second edge coupling members includes a portion in a concave shape and the other includes a portion in a convex shape.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: CHENG-TSE TANG, CHEWN-PU JOU
  • Publication number: 20240045159
    Abstract: A photonic structure and a method for manufacturing the same are provided. The photonic structure includes a substrate, an insulating structure, a first waveguide layer, a second waveguide layer and a high-dielectric constant material. The insulating structure is located over the substrate. The first waveguide layer is embedded in the insulating structure. The second waveguide layer is embedded in the insulating structure and longitudinally spaced apart from the first waveguide layer. The high-dielectric constant material is disposed between the first waveguide layer and the second waveguide layer.
    Type: Application
    Filed: August 3, 2022
    Publication date: February 8, 2024
    Inventors: MING YANG JUNG, STEFAN RUSU, CHENG-TSE TANG
  • Publication number: 20240004134
    Abstract: The present disclosure relates to optical waveguide termination devices. In some embodiments, an optical waveguide termination device is coupled to an end of an optical waveguide. The optical waveguide termination device is a tapered structure. In various embodiments, an optical absorption rate of the tapered structure is increased to enhance a termination efficiency. The optical absorption is increased by highly-doped material, multi-layer structure, different cladding, and periodic structure. The enhancement of the termination efficiency benefits size reduction of the tapered structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Cheng-Tse TANG, Chewn-Pu JOU, Chia-Ju YU, CHENG HSIAO
  • Publication number: 20230400639
    Abstract: Disclosed are edge couplers having a high coupling efficiency and low polarization dependent loss, and methods of making the edge couplers. In one embodiment, a semiconductor device for optical coupling is disclosed. The semiconductor device includes: a substrate; an optical waveguide over the substrate; and a plurality of layers over the optical waveguide. The plurality of layers includes a plurality of coupling pillars disposed at an edge of the semiconductor device. The plurality of coupling pillars form an edge coupler configured for optically coupling the optical waveguide to an optical fiber placed at the edge of the semiconductor device.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 14, 2023
    Inventors: Min-Hsiang HSU, Chewn-Pu Jou, Chan-Hong Chern, Cheng-Tse Tang, Yung-Jr Hung, Lan-Chou Cho
  • Publication number: 20230367062
    Abstract: Disclosed are semiconductor packages and manufacturing method of the semiconductor packages. In one embodiment, a semiconductor package includes a substrate, a first waveguide, a semiconductor die, and an adhesive layer. The first waveguide is disposed on the substrate. The semiconductor die is disposed on the substrate and includes a second waveguide aligned with the first waveguide. The adhesive layer is disposed between the first waveguide and the second waveguide.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hua-Kuei Lin, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Che-Hsiang Hsu, Chewn-Pu Jou, Cheng-Tse Tang
  • Patent number: 11796739
    Abstract: Disclosed are edge couplers having a high coupling efficiency and low polarization dependent loss, and methods of making the edge couplers. In one embodiment, a semiconductor device for optical coupling is disclosed. The semiconductor device includes: a substrate; an optical waveguide over the substrate; and a plurality of layers over the optical waveguide. The plurality of layers includes a plurality of coupling pillars disposed at an edge of the semiconductor device. The plurality of coupling pillars form an edge coupler configured for optically coupling the optical waveguide to an optical fiber placed at the edge of the semiconductor device.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Hsiang Hsu, Chewn-Pu Jou, Chan-Hong Chern, Cheng-Tse Tang, Yung-Jr Hung, Lan-Chou Cho
  • Publication number: 20230324596
    Abstract: An optical device is provided. The optical device includes a ring waveguide and a bus waveguide. The ring waveguide includes a coupling region. The bus waveguide is disposed adjacent to and spaced apart from the coupling region of the ring waveguide. The bus waveguide includes a coupling structure corresponding to the coupling region.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 12, 2023
    Inventors: CHENG-TSE TANG, CHEWN-PU JOU, LAN-CHOU CHO, MING YANG JUNG, TAI-CHUN HUANG
  • Publication number: 20230324609
    Abstract: A method includes: determining a first material and a second material of a photonic waveguide for propagating light, the photonic waveguide having a first section and a second section arranged in a first layer and a second layer, respectively, of the photonic waveguide; determining a spacing between the first layer and the second layer; determining a parameter set of a crosstalk reduction structure, according to the spacing, the first material and a wavelength of the light, to cause insertion losses of the first section and the second section to be lower than a predetermined threshold; and forming the first and second sections with the first and second materials, respectively, the first section having the crosstalk reduction structure overlapping the second section.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 12, 2023
    Inventors: MING YANG CHUNG, CHEWN-PU JOU, STEFAN RUSU, CHENG-TSE TANG
  • Patent number: 11754780
    Abstract: Disclosed are semiconductor packages and manufacturing method of the semiconductor packages. In one embodiment, a semiconductor package includes a substrate, a first waveguide, a semiconductor die, and an adhesive layer. The first waveguide is disposed on the substrate. The semiconductor die is disposed on the substrate and includes a second waveguide aligned with the first waveguide. The adhesive layer is disposed between the first waveguide and the second waveguide.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: September 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Hua-Kuei Lin, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Che-Hsiang Hsu, Chewn-Pu Jou, Cheng-Tse Tang
  • Publication number: 20230273370
    Abstract: A device includes an optical isolator disposed between adjacent optical waveguides along a direction. The optical isolator has vertical or horizontal dimensions that are different than at least one of the optical waveguides. The vertical and horizontal dimensions are greater than vertical and horizontal dimensions of at least one of the waveguides. In various embodiments, the structure of the optical isolator can be a planar structure, a columnar periodic structure, or a grating structure. The material of the optical isolator can be a metallic material or a dielectric material. In some embodiments, the optical isolator and the optical waveguides are used to enhance the performance of an optical multiplexing device.
    Type: Application
    Filed: July 15, 2022
    Publication date: August 31, 2023
    Inventors: Cheng-Tse TANG, Chewn-Pu JOU
  • Publication number: 20230258860
    Abstract: The present disclosure provides a semiconductor device, a photonic circuit, and a method for adjusting a resonant wavelength of an optical modulator. The semiconductor device includes a substrate, a first waveguide disposed on the substrate, and a second waveguide disposed on the substrate and spaced apart from the first waveguide with a first distance. In addition, the second waveguide includes a first electrical coupling portion having a first type doping, a second electrical coupling portion having a second type doping, and an optical coupling portion disposed between the first electrical coupling portion and the second electrical coupling portion, wherein the second waveguide is configured to receive a first voltage through the first electrical coupling portion and the second electrical coupling portion to decrease a resonant wavelength of the second waveguide.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Inventors: LAN-CHOU CHO, CHEWN-PU JOU, CHENG-TSE TANG, STEFAN RUSU
  • Publication number: 20230245967
    Abstract: A manufacturing method of a semiconductor package includes the following steps. A supporting layer is formed over a redistribution structure. A first planarization process is performed over the supporting layer. A lower dielectric layer is formed over the supporting layer, wherein the lower dielectric layer includes a concave exposing a device mounting region of the supporting layer. A first sacrificial layer is formed over the supporting layer, wherein the sacrificial layer filling the concave. A second planarization process is performed over the lower dielectric layer and the first sacrificial layer. A transition waveguide provided over the lower dielectric layer. The first sacrificial layer is removed. A semiconductor device is mounted over the device mounting region, wherein the semiconductor device includes a device waveguide is optically coupled to the transition waveguide.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 3, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Hsiu-Jen Lin, Ming-Che Ho, Yu-Hsiang Hu, Chewn-Pu Jou, Cheng-Tse Tang
  • Publication number: 20230221511
    Abstract: A semiconductor device includes a plurality of intermediate waveguides. The plurality of intermediate waveguides are vertically disposed on top of one another, and vertically adjacent ones of the plurality of intermediate waveguides are laterally offset from each other. When viewed from the top, each of the plurality of intermediate waveguides essentially consists of a first portion and a second portion, the first portion has a first varying width that increases from a first end of the corresponding intermediate waveguide to a middle of the corresponding intermediate waveguide, and the second portion has a second varying width that decreases from the middle of the corresponding intermediate waveguide to a second end of the corresponding intermediate waveguide.
    Type: Application
    Filed: May 26, 2022
    Publication date: July 13, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Tse Tang, Chewn-Pu Jou, Chih-Wei Tseng, Hsing-Kuo Hsia, Ming Yang Chung
  • Publication number: 20230204862
    Abstract: An optical coupler is provided. The optical coupler includes: a first optical structure, and a second optical structure disposed over the first optical structure. The first optical structure includes: a first substrate, a first cladding layer disposed on the first substrate, and a first waveguide disposed on the first cladding layer. The first waveguide includes a first coupling portion, and the first coupling portion including a first taper part. The second optical structure includes: a second substrate, a dielectric layer disposed on the second substrate; and a second waveguide disposed on the dielectric layer. The second waveguide includes a second coupling portion, and the second coupling portion including a second taper part. The second taper part is disposed on and optically coupled with the first taper part, and a taper direction of the first taper part is the same as a taper direction of the second taper part.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Chewn-Pu Jou, Cheng-Tse Tang, Hung-Yi Kuo
  • Patent number: 11640935
    Abstract: A semiconductor package includes a redistribution structure, a supporting layer, a semiconductor device, and a transition waveguide structure. The redistribution structure includes a plurality of connectors. The supporting layer is formed over the redistribution structure and disposed beside and between the plurality of connectors. The semiconductor device is disposed on the supporting layer and bonded to the plurality of connectors, wherein the semiconductor device includes a device waveguide. The transition waveguide structure is disposed on the supporting layer adjacent to the semiconductor device, wherein the transition waveguide structure is optically coupled to the device waveguide.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: May 2, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Hsiu-Jen Lin, Ming-Che Ho, Yu-Hsiang Hu, Chewn-Pu Jou, Cheng-Tse Tang
  • Patent number: 11640033
    Abstract: An optical coupler is provided. The optical coupler includes: a first optical structure, and a second optical structure disposed over the first optical structure. The first optical structure includes: a first substrate, a first cladding layer disposed on the first substrate, and a first waveguide disposed on the first cladding layer. The first waveguide includes a first coupling portion, and the first coupling portion including a first taper part. The second optical structure includes: a second substrate, a dielectric layer disposed on the second substrate; and a second waveguide disposed on the dielectric layer. The second waveguide includes a second coupling portion, and the second coupling portion including a second taper part. The second taper part is disposed on and optically coupled with the first taper part, and a taper direction of the first taper part is the same as a taper direction of the second taper part.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: May 2, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng-Wei Kuo, Chewn-Pu Jou, Cheng-Tse Tang, Hung-Yi Kuo
  • Publication number: 20230061568
    Abstract: Disclosed are edge couplers having a high coupling efficiency and low polarization dependent loss, and methods of making the edge couplers. In one embodiment, a semiconductor device for optical coupling is disclosed. The semiconductor device includes: a substrate; an optical waveguide over the substrate; and a plurality of layers over the optical waveguide. The plurality of layers includes a plurality of coupling pillars disposed at an edge of the semiconductor device. The plurality of coupling pillars form an edge coupler configured for optically coupling the optical waveguide to an optical fiber placed at the edge of the semiconductor device.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Min-Hsiang Hsu, Chewn-Pu Jou, Chan-Hong Chern, Cheng-Tse Tang, Yung-Jr Hung, Lan-Chou Cho