Patents by Inventor Cherngye Hwang

Cherngye Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11682419
    Abstract: A magnetic recording head assembly is provided and is configured to read from and write to a magnetic media. The head assembly includes a first module having a first media facing surface (MFS), a first closure, and a first recessed portion disposed between the first MFS and the first closure. The first MFS includes AlTiC. A second module is provided having a second MFS, a second closure, and a second recessed portion disposed between the second MFS and the second closure. The second MFS includes AlTiC. An overcoat disposed within the first and second recessed portions includes an adhesive layer and a protective layer disposed within the first and second recessed portion.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 20, 2023
    Assignee: Western Digital Technologies, Inc.
    Inventors: Kenji Kuroki, Oscar Ruiz, Cherngye Hwang, Eduardo Torres Mireles
  • Publication number: 20230186946
    Abstract: The present disclosure is generally related to a tape drive including a tape head configured to read shingled data on a tape. The tape head comprises a first module head assembly aligned with a second module head assembly. Both the first and second module head assemblies comprises a plurality of data heads. Each data head comprises a write head, a first read head aligned with the write head, a second read head offset from the first read head in both a cross-track direction and a down-track direction, and a third read head offset from the first and/or second read heads in the cross-track and down-track directions. By utilizing three read heads within each data head, data can be read from a tape that has experienced tape dimensional stability, as at least one read head will be near a center of each data track of the tape.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Inventors: Quang LE, Xiaoyong LIU, Hongquan JIANG, Cherngye HWANG, Kuok San HO, Hisashi TAKANO
  • Patent number: 11670329
    Abstract: The present disclosure is generally related to a tape drive including a tape head configured to read shingled data on a tape. The tape head comprises a first module head assembly aligned with a second module head assembly. Both the first and second module head assemblies comprises a plurality of data heads. Each data head comprises a write head, a first read head aligned with the write head, a second read head offset from the first read head in both a cross-track direction and a down-track direction, and a third read head offset from the first and/or second read heads in the cross-track and down-track directions. By utilizing three read heads within each data head, data can be read from a tape that has experienced tape dimensional stability, as at least one read head will be near a center of each data track of the tape.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: June 6, 2023
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Xiaoyong Liu, Hongquan Jiang, Cherngye Hwang, Kuok San Ho, Hisashi Takano
  • Publication number: 20230121375
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) devices comprising a topological insulator (TI) modulation layer. The TI modulation layer comprises a plurality of bismuth or bismuth-rich composition modulation layers, a plurality of TI lamellae layers comprising BiSb having a (012) crystal orientation, and a plurality of texturing layers. The TI lamellae layers comprise dopants or clusters of atoms, the clusters of atoms comprising a carbide, a nitride, an oxide, or a composite ceramic material. The clusters of atoms are configured to have a grain boundary glass forming temperature of less than about 400° C. Doping the TI lamellae layers comprising BiSb having a (012) crystal orientation with clusters of atoms comprising a carbide, a nitride, an oxide, or a composite ceramic material enable the SOT MTJ device to operate at higher temperatures while inhibiting migration of Sb from the BiSb of the TI lamellae layers.
    Type: Application
    Filed: December 16, 2022
    Publication date: April 20, 2023
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Susumu OKAMURA, Xiaoyong LIU, Kuok San HO, Hisashi TAKANO
  • Patent number: 11631535
    Abstract: The present disclosure generally relates to a storage device comprising soft bias structures having high coercivity and high anisotropy, and a method of forming thereof. The soft bias structures may be formed by moving a wafer in a first direction under a plume of NiFe to deposit a first NiFe layer at a first angle, moving the wafer in a second direction anti-parallel to the first direction to deposit a second NiFe layer at a second angle on the first NiFe layer, and repeating one or more times. The soft bias structures may be formed by rotating a wafer to a first position, depositing a first NiFe layer at a first angle, rotating the wafer to a second position, depositing a second NiFe layer at a second angle on the first NiFe layer, and repeating one or more times. The first and second NiFe layers have different grain structures.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 18, 2023
    Assignee: Western Digital Technologies, Inc.
    Inventors: Masaya Nishioka, Diane L. Brown, Jianhua Hu, Cherngye Hwang
  • Publication number: 20230111296
    Abstract: The present disclosure generally relates to a storage device comprising soft bias structures having high coercivity and high anisotropy, and a method of forming thereof. The soft bias structures may be formed by moving a wafer in a first direction under a plume of NiFe to deposit a first NiFe layer at a first angle, moving the wafer in a second direction anti-parallel to the first direction to deposit a second NiFe layer at a second angle on the first NiFe layer, and repeating one or more times. The soft bias structures may be formed by rotating a wafer to a first position, depositing a first NiFe layer at a first angle, rotating the wafer to a second position, depositing a second NiFe layer at a second angle on the first NiFe layer, and repeating one or more times. The first and second NiFe layers have different grain structures.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Inventors: Masaya Nishioka, Diane L. Brown, Jianhua Hu, Cherngye Hwang
  • Publication number: 20230052309
    Abstract: A magnetic recording head assembly is provided and is configured to read from and write to a magnetic media. The head assembly includes a first module having a first media facing surface (MFS), a first closure, and a first recessed portion disposed between the first MFS and the first closure. The first MFS includes AlTiC. A second module is provided having a second MFS, a second closure, and a second recessed portion disposed between the second MFS and the second closure. The second MFS includes AlTiC. An overcoat disposed within the first and second recessed portions includes an adhesive layer and a protective layer disposed within the first and second recessed portion.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Kenji KUROKI, Oscar RUIZ, Cherngye HWANG, Eduardo TORRES MIRELES
  • Publication number: 20230047223
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a buffer layer, a bismuth antimony (BiSb) layer having a (012) orientation disposed on the buffer layer, and an interlayer disposed on the BiSb layer. The buffer layer and the interlayer may each independently be a single layer of material or a multilayer of material. The buffer layer and the interlayer each comprise at least one of a covalently bonded amorphous material, a tetragonal (001) material, a tetragonal (110) material, a body-centered cubic (bcc) (100) material, a face-centered cubic (fcc) (100) material, a textured bcc (100) material, a textured fcc (100) material, a textured (100) material, or an amorphous metallic material. The buffer layer and the interlayer inhibit antimony (Sb) migration within the BiSb layer and enhance uniformity of the BiSb layer while further promoting the (012) orientation of the BiSb layer.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Susumu OKAMURA, Michael GRIBELYUK, Xiaoyong LIU, Kuok San HO, Hisashi TAKANO
  • Publication number: 20230027086
    Abstract: A spin-orbit torque (SOT) magnetic tunnel junction (MTJ) device includes a substrate, a seed layer over the substrate, and a bismuth antimony (BiSb) layer having (0120) orientation on the seed layer. The seed layer includes a silicide layer and a surface control layer. The silicide layer includes a material of NiSi, NiFeSi, NiFeTaSi, NiCuSi, CoSi, CoFeSi, CoFeTaSi, CoCuSi, or combinations thereof. The surface control layer includes a material of NiFe, NiFeTa, NiTa, NiW, NiFeW, NiCu, NiCuM, NiFeCu, CoTa, CoFeTa, NiCoTa, Co, CoM, CoNiM, CoNi, NiSi, CoSi, NiCoSi, Cu, CuAgM, CuM, or combinations thereof, in which M is Fe, Cu, Co, Ta, Ag, Ni, Mn, Cr, V, Ti, or Si.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 26, 2023
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Cherngye HWANG, Brian R. YORK, Andrew CHEN, Thao A. NGUYEN, Yongchul AHN, Xiaoyong LIU, Hongquan JIANG, Zheng GAO, Kuok San HO
  • Publication number: 20220415345
    Abstract: The present disclosure relates to read head apparatus, and methods of forming read head apparatus, for magnetic storage devices, such as magnetic tape drives (e.g., tape drives). In one implementation, a read head for magnetic storage devices includes a lower shield, one or more upper shields, one or more lower leads, and a plurality of upper leads. The read head includes a plurality of read sensors, each read sensor of the plurality of read sensors including a first antiferromagnetic (AFM) layer. The read head includes a plurality of soft bias side shields disposed between and outwardly of the plurality of read sensors. The read head includes one or more second AFM layers disposed above the first AFM layer and the plurality of soft bias side shields along a downtrack direction.
    Type: Application
    Filed: July 18, 2022
    Publication date: December 29, 2022
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Hongquan JIANG, Cherngye HWANG, Hisashi TAKANO
  • Patent number: 11532323
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a topological insulator (TI) modulation layer. The TI modulation layer comprises a plurality of bismuth or bismuth-rich composition modulation layers, a plurality of TI lamellae layers comprising BiSb having a (012) crystal orientation, and a plurality of texturing layers. The TI lamellae layers comprise dopants or clusters of atoms, the clusters of atoms comprising a carbide, a nitride, an oxide, or a composite ceramic material. The clusters of atoms are configured to have a grain boundary glass forming temperature of less than about 400° C. Doping the TI lamellae layers comprising BiSb having a (012) crystal orientation with clusters of atoms comprising a carbide, a nitride, an oxide, or a composite ceramic material enable the SOT MTJ device to operate at higher temperatures while inhibiting migration of Sb from the BiSb of the TI lamellae layers.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 20, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Brian R. York, Cherngye Hwang, Susumu Okamura, Xiaoyong Liu, Kuok San Ho, Hisashi Takano
  • Patent number: 11527390
    Abstract: Cathode structures are disclosed for use with pulsed cathodic arc deposition systems for forming diamond-like carbon (DLC) films on devices, such as on the sliders of hard disk drives. In illustrative examples, a base layer composed of an electrically- and thermally-conducting material is provided between the ceramic substrate of the cathode and a graphitic paint outer coating, where the base layer is a silver-filled coating that adheres to the ceramic rod and the graphitic paint. The base layer is provided, in some examples, to achieve and maintain a relatively low resistance (and hence a relatively high conductivity) within the cathode structure during pulsed arc deposition to avoid issues that can result from a loss of conductivity within the graphitic paint over time as deposition proceeds. Examples of suitable base material compounds are described herein where, e.g., the base layer can withstand temperatures of 1700° F. (927° C.).
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: December 13, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Cherngye Hwang, Reimar Azupardo, Randall Simmons, Mary Agnes Gupit Perez
  • Patent number: 11514930
    Abstract: The present disclosure generally relates to magnetic storage devices, such as magnetic tape drives, comprising a read head. The read head comprises a plurality of read sensors disposed between a lower shield and an upper shield. A plurality of soft bias side shields are disposed adjacent to and outwardly of the plurality of read sensors in a cross-track direction. A plurality of hard bias side shields are disposed on and in contact with the soft bias side shields to stabilize the soft bias side shields. Each of the plurality of soft bias side shields are spaced a first distance from the lower shield and each of the hard bias side shields are spaced a second distance from the upper shield, the first distance being substantially equal to the second distance.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Hongquan Jiang, Hisashi Takano, Cherngye Hwang
  • Patent number: 11514932
    Abstract: The present disclosure generally relates to magnetic storage devices, such as magnetic tape drives, comprising a read head. The read head comprises a plurality of read sensors disposed between a lower shield having a first width in a stripe height direction and an upper shield. The plurality of read sensors comprise an antiferromagnetic layer and a free layer comprising a first layer and a second layer. A plurality of soft bias side shields disposed adjacent to and outwardly of the plurality of read sensors in a cross-track direction, each of the plurality of soft bias side shields having a second width in the stripe height direction less than the first width. Each of the plurality of soft bias side shields are spaced a first distance from the lower shield and a second distance from the upper shield, the first distance being substantially equal to the second distance.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Hongquan Jiang, Hisashi Takano, Cherngye Hwang, Xiaoyong Liu
  • Patent number: 11514936
    Abstract: The present disclosure relates to read head apparatus, and methods of forming read head apparatus, for magnetic storage devices, such as magnetic tape drives (e.g., tape drives). In one implementation, a read head for magnetic storage devices includes a lower shield, an upper shield, one or more lower leads, and a plurality of upper leads. The read head includes a plurality of read sensors, each read sensor of the plurality of read sensors including a first antiferromagnetic (AFM) layer. The read head includes a plurality of soft bias side shields disposed between and outwardly of the plurality of read sensors. The read head includes a plurality of second AFM layers disposed below the plurality of soft bias side shields along a downtrack direction.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 29, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Hongquan Jiang, Cherngye Hwang, Hisashi Takano
  • Patent number: 11495741
    Abstract: A SOT device includes a bismuth antimony dopant element (BiSbE) alloy layer over a substrate. The BiSbE alloy layer is used as a topological insulator. The BiSbE alloy layer includes bismuth, antimony, AND a dopant element. The dopant element is a non-metallic dopant element, a metallic dopant element, and combinations thereof. Examples of metallic dopant elements include Ni, Co, Fe, CoFe, NiFe, NiCo, NiCu, CoCu, NiAg, CuAg, Cu, Al, Zn, Ag, Ga, In, or combinations thereof. Examples of non-metallic dopant elements include Si, P, Ge, or combinations thereof. The BiSbE alloy layer can include a plurality of BiSb lamellae layers and one or more dopant element lamellae layers. The BiSbE alloy layer has a (012) orientation.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Brian R. York, Cherngye Hwang, Alan Spool, Michael Gribelyuk, Quang Le
  • Patent number: 11489108
    Abstract: A spin-orbit torque (SOT) magnetic tunnel junction (MTJ) device includes a substrate, a seed layer over the substrate, and a bismuth antimony (BiSb) layer having (0120) orientation on the seed layer. The seed layer includes a silicide layer and a surface control layer. The silicide layer includes a material of NiSi, NiFeSi, NiFeTaSi, NiCuSi, CoSi, CoFeSi, CoFeTaSi, CoCuSi, or combinations thereof. The surface control layer includes a material of NiFe, NiFeTa, NiTa, NiW, NiFeW, NiCu, NiCuM, NiFeCu, CoTa, CoFeTa, NiCoTa, Co, CoM, CoNiM, CoNi, NiSi, CoSi, NiCoSi, Cu, CuAgM, CuM, or combinations thereof, in which M is Fe, Cu, Co, Ta, Ag, Ni, Mn, Cr, V, Ti, or Si.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: November 1, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Cherngye Hwang, Brian R. York, Andrew Chen, Thao A. Nguyen, Yongchul Ahn, Xiaoyong Liu, Hongquan Jiang, Zheng Gao, Kuok San Ho
  • Patent number: 11437061
    Abstract: The present disclosure relates to read head apparatus, and methods of forming read head apparatus, for magnetic storage devices, such as magnetic tape drives (e.g., tape drives). In one implementation, a read head for magnetic storage devices includes a lower shield, one or more upper shields, one or more lower leads, and a plurality of upper leads. The read head includes a plurality of read sensors, each read sensor of the plurality of read sensors including a first antiferromagnetic (AFM) layer. The read head includes a plurality of soft bias side shields disposed between and outwardly of the plurality of read sensors. The read head includes one or more second AFM layers disposed above the first AFM layer and the plurality of soft bias side shields along a downtrack direction.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 6, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Hongquan Jiang, Cherngye Hwang, Hisashi Takano
  • Publication number: 20220157571
    Abstract: Cathode structures are disclosed for use with pulsed cathodic arc deposition systems for forming diamond-like carbon (DLC) films on devices, such as on the sliders of hard disk drives. In illustrative examples, a base layer composed of an electrically- and thermally-conducting material is provided between the ceramic substrate of the cathode and a graphitic paint outer coating, where the base layer is a silver-filled coating that adheres to the ceramic rod and the graphitic paint. The base layer is provided, in some examples, to achieve and maintain a relatively low resistance (and hence a relatively high conductivity) within the cathode structure during pulsed arc deposition to avoid issues that can result from a loss of conductivity within the graphitic paint over time as deposition proceeds. Examples of suitable base material compounds are described herein where, e.g., the base layer can withstand temperatures of 1700° F. (927° C.).
    Type: Application
    Filed: February 3, 2022
    Publication date: May 19, 2022
    Inventors: Cherngye Hwang, Reimar Azupardo, Randall Simmons, Mary Agnes Gupit Perez
  • Patent number: 11270872
    Abstract: Cathode structures are disclosed for use with pulsed cathodic arc deposition systems for forming diamond-like carbon (DLC) films on devices, such as on the sliders of hard disk drives. In illustrative examples, a base layer composed of an electrically- and thermally-conducting material is provided between the ceramic substrate of the cathode and a graphitic paint outer coating, where the base layer is a silver-filled coating that adheres to the ceramic rod and the graphitic paint. The base layer is provided, in some examples, to achieve and maintain a relatively low resistance (and hence a relatively high conductivity) within the cathode structure during pulsed arc deposition to avoid issues that can result from a loss of conductivity within the graphitic paint over time as deposition proceeds. Examples of suitable base material compounds are described herein where, e.g., the base layer can withstand temperatures of 1700° F. (927° C.).
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 8, 2022
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Cherngye Hwang, Reimar Azupardo, Randall Simmons, Mary Agnes Gupit Perez