Patents by Inventor Chew Beng Soh

Chew Beng Soh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629425
    Abstract: A light emitting diode and a method of fabricating a light emitting diode, the diode has a first set of multiple quantum wells (MQWs), each of the MQWs of the first set comprising a wetting layer providing nucleation sites for quantum dots (QDs) or QD-like structures in a well layer of said each MQW; and a second set of MQWs, each of the MQWs of the second set formed so as to exhibit a photoluminescence (PL) peak wavelength shifted compared to the MQWs of the first set.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: January 14, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Chew Beng Soh, Soo Jin Chua, Haryono Hartono
  • Patent number: 8436334
    Abstract: A multiple quantum well (MQW) structure for a light emitting diode and a method for fabricating a MQW structure for a light emitting diode are provided. The MQW structure comprises a plurality of quantum well structures, each quantum well structure comprising: a barrier layer; and a well layer having quantum dot nanostructures embedded therein formed on the barrier layer, the barrier and the well layer comprising a first metal-nitride based material; wherein at least one of the quantum well structures further comprises a capping layer formed on the well layer, the capping layer comprising a second metal-nitride based material having a different metal element compared to the first metal-nitride based material.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 7, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Chew Beng Soh, Soo Jin Chua, Wei Liu, Jing Hua Teng
  • Patent number: 8421058
    Abstract: A light emitting diode structure and a method of forming a light emitting diode structure are provided. The structure includes a superlattice comprising, a first barrier layer; a first quantum well layer comprising a first metal-nitride based material formed on the first barrier layer; a second barrier layer formed on the first quantum well layer; and a second quantum well layer including the first metal-nitride based material formed on the second barrier layer; and wherein a difference between conduction band energy of the first quantum well layer and conduction band energy of the second quantum well layer is matched to a single or multiple longitudinal optical phonon energy for reducing electron kinetic energy in the superlattice.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: April 16, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Wei Liu, Chew Beng Soh, Soo Jin Chua, Jing Hua Teng
  • Publication number: 20130020549
    Abstract: The present invention relates, in some aspects, to systems and methods for fabricating longitudinally-shaped structures such as nanobelt semiconductor structures. In some embodiments, the method comprises: a) providing a substrate selected to promote epitaxial growth thereon a selected growth orientation, b) depositing a crystalline sacrificial layer on the substrate for epitaxially growing along the selected growth orientation, c) forming a film over the sacrificial layer, the film having a crystal lattice structure grown substantially along the selected growth orientation, and d) removing at least part of the sacrificial layer, thereby producing the longitudinally shaped structures from the film by strain redistribution through the crystal lattice structure of the film to crack the film along a selected in-plane axis of the selected growth orientation.
    Type: Application
    Filed: June 25, 2012
    Publication date: January 24, 2013
    Applicant: Agency for Science, Technology and Research
    Inventors: Hongfei Liu, Wei Liu, Soo Jin Chua, Chew Beng Soh
  • Publication number: 20110284824
    Abstract: A light emitting diode structure and a method of forming a light emitting diode structure are provided. The structure comprises a superlattice comprising, a first barrier layer; a first quantum well layer comprising a first metal-nitride based material formed on the first barrier layer; a second barrier layer formed on the first quantum well layer; and a second quantum well layer comprising the first metal-nitride based material formed on the second barrier layer; and wherein a difference between conduction band energy of the first quantum well layer and conduction band energy of the second quantum well layer is matched to a single or multiple longitudinal optical phonon energy for reducing electron kinetic energy in the superlattice.
    Type: Application
    Filed: November 20, 2009
    Publication date: November 24, 2011
    Applicant: Agency for Science, Technology and Research
    Inventors: Wei Liu, Chew Beng Soh, Soo Jin Chua, Jing Hua Teng
  • Publication number: 20100224857
    Abstract: A multiple quantum well (MQW) structure for a light emitting diode and a method for fabricating a MQW structure for a light emitting diode are provided. The MQW structure comprises a plurality of quantum well structures, each quantum well structure comprising: a barrier layer; and a well layer having quantum dot nanostructures embedded therein formed on the barrier layer, the barrier and the well layer comprising a first metal-nitride based material; wherein at least one of the quantum well structures further comprises a capping layer formed on the well layer, the capping layer comprising a second metal-nitride based material having a different metal element compared to the first metal-nitride based material.
    Type: Application
    Filed: October 12, 2007
    Publication date: September 9, 2010
    Applicant: Agency for Science Tecnology and Research
    Inventors: Chew Beng Soh, Soo Jin Chua, Wei Liu, Jing Hua Teng
  • Publication number: 20100025653
    Abstract: A light emitting diode and a method of fabricating a light emitting diode, the diode has a first set of multiple quantum wells (MQWs), each of the MQWs of the first set comprising a wetting layer providing nucleation sites for quantum dots (QDs) or QD-like structures in a well layer of said each MQW; and a second set of MQWs, each of the MQWs of the second set formed so as to exhibit a photoluminescence (PL) peak wavelength shifted compared to the MQWs of the first set.
    Type: Application
    Filed: September 8, 2006
    Publication date: February 4, 2010
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Chew Beng Soh, Soo Jin Chua, Haryono Hartono
  • Publication number: 20090001416
    Abstract: Si-doped porous GaN is fabricated by UV-enhanced Pt-assisted electrochemical etching and together with a low-temperature grown buffer layer are utilized as the template for InGaN growth. The porous network in GaN shows nanostructures formed on the surface. Subsequent growth of InGaN shows that it is relaxed on these nanostructures as the area on which the growth takes place is very small. The strain relaxation favors higher indium incorporation. Besides, this porous network creates a relatively rough surface of GaN to modify the surface energy which can enhance the nucleation of impinging indium atoms thereby increasing indium incorporation. It shifts the luminescence from 445 nm for a conventionally grown InGaN structure to 575 nm and enhances the intensity by more than two-fold for the growth technique in the present invention under the same growth conditions. There is also a spectral broadening of the output extending from 480 nm to 720 nm.
    Type: Application
    Filed: June 28, 2007
    Publication date: January 1, 2009
    Inventors: Soo Jin Chua, Haryono Hartono, Chew Beng Soh