Patents by Inventor Chi-Lin O'Young

Chi-Lin O'Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8513449
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 60 nanometers, preferably from about 0.1 to about 30 nanometers, and most preferably from about 0.1 to about 15 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 20, 2013
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Sabrina R. Cromer, Regina Nelson Eng, Kenrick M. Lewis, Abellard T. Mereigh, Chi-Lin O'Young, Hua Yu
  • Patent number: 8293203
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: October 23, 2012
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Publication number: 20110065948
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 60 nanometers, preferably from about 0.1 to about 30 nanometers, and most preferably from about 0.1 to about 15 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: Momentive Performance Materials Inc.
    Inventors: Sabrina R. Cromer, Regina Nelson Eng, Kenrick M. Lewis, Abellard T. Mereigh, Chi-Lin O'Young, Hua Yu
  • Patent number: 7858818
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 60 nanometers, preferably from about 0.1 to about 30 nanometers, and most preferably from about 0.1 to about 15 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: December 28, 2010
    Assignee: Momentive Performance Materials Inc.
    Inventors: Sabrina R. Cromer, Regina Nelson Eng, Kenrick M. Lewis, Abellard T. Mereigh, Chi-Lin O'Young, Hua Yu
  • Publication number: 20100150811
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: MOMENTIVE PERFORMANCE MATERIALS INC.
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Patent number: 7700796
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: April 20, 2010
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Patent number: 7652164
    Abstract: The Direct Synthesis of trialkoxysilane is carried out by conducting the Direct Synthesis reaction of silicon and alcohol, optionally in solvent, in the presence of a catalytically effective amount of Direct Synthesis catalyst and an effective catalyst-promoting amount of Direct Synthesis catalyst promoter, said promoter being an organic or inorganic compound possessing at least one phosphorus-oxygen bond.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: January 26, 2010
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Abellard T. Mereigh, Chi-Lin O'Young, Rudolph A. Cameron
  • Patent number: 7495120
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 600 nanometers, preferably from about 0.1 to about 500 nanometers, and most preferably from about 0.1 to about 100 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: February 24, 2009
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Regina Nelson Eng, Sabrina R. Cromer, Abellard T. Mereigh, Chi-Lin O'Young
  • Publication number: 20080103323
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 60 nanometers, preferably from about 0.1 to about 30 nanometers, and most preferably from about 0.1 to about 15 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Application
    Filed: May 21, 2007
    Publication date: May 1, 2008
    Inventors: Sabrina R. Cromer, Regina Nelson Eng, Kenrick M. Lewis, Abellard T. Merelgh, Chi-Lin O'Young, Hua Yu
  • Publication number: 20080081923
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 600 nanometers, preferably from about 0.1 to about 500 nanometers, and most preferably from about 0.1 to about 100 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Application
    Filed: December 17, 2007
    Publication date: April 3, 2008
    Inventors: Kenrick Lewis, Regina Eng, Sabrina Cromer, Abellard Mereigh, Chi-Lin O'Young
  • Patent number: 7339068
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 600 nanometers, preferably from about 0.1 to about 500 nanometers, and most preferably from about 0.1 to about 100 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 4, 2008
    Assignee: Momentive Performance Materials Inc.
    Inventors: Kenrick M. Lewis, Regina Nelson Eng, Sabrina R. Cromer, Abellard T. Mereigh, Chi-Lin O'Young
  • Publication number: 20070060764
    Abstract: The Direct Synthesis of trialkoxysilane is carried out by conducting the Direct Synthesis reaction of silicon and alcohol, optionally in solvent, in the presence of a catalytically effective amount of Direct Synthesis catalyst and an effective catalyst-promoting amount of Direct Synthesis catalyst promoter, said promoter being an organic or inorganic compound possessing at least one phosphorus-oxygen bond.
    Type: Application
    Filed: November 21, 2005
    Publication date: March 15, 2007
    Inventors: Kenrick Lewis, Abellard Mereigh, Chi-Lin O'Young, Rudolph Cameron
  • Patent number: 7087100
    Abstract: The present invention is a process for producing nanosized metal compounds. The preferred product is nanosized copper, nanosized copper (I) oxide, and nanosized copper (II) oxide. The process includes heating a copper metal precursor in a hydrocarbon preferably selected from alkylated benzenes, polyaromatic hydrocarbons, paraffins and/or naphthenic hydrocarbons. The heating is desirably at a temperature and time effective to convert, for example, the copper metal precursor to nanosized copper (II) oxide, nanosized copper (I) oxide and/or nanosized copper metal. Separation of the hydrocarbon is then performed. Recovering the solid product and recycle/reuse of the recovered hydrocarbon in subsequent preparations of nanosized metal and metal oxides may be performed. The nanosized metal oxides of the invention may additionally be converted to nanosized metal salts by reaction with the appropriate acids while dispersed in the hydrocarbons.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: August 8, 2006
    Assignee: General Electric Company
    Inventors: Kenrick M. Lewis, Hua Yu, Regina Nelson Eng, Sabrina R. Cromer, Chi-Lin O'Young, Abellard T. Mereigh
  • Publication number: 20040009117
    Abstract: A method of making nanosized copper (I) compounds, in particular, copper (I) halides, pseudohalides, and cyanocuprate complexes, in reverse micelles or microemulsions is disclosed herein. The method of the invention comprises (a) dissolving a copper (II) compound in the polar phase of a first reverse micelle or microemulsion, (b) dissolving a copper (II) to copper (I) reducing agent or a pseudohalide salt in the polar phase of a second sample of the same reverse micelle or microemulsion, (c) mixing the two reverse micelle/microemulsions samples to form nanometer sized copper (I) compounds and (d) recovering said nanometer sized copper (I) compounds. The present invention is also directed to the resultant nanosized copper (I) compounds, such as copper (I) chloride, copper (I) cyanide, and potassium cyanocuprate complexes having an average particle size of about 0.1 to 600 nanometers.
    Type: Application
    Filed: April 16, 2003
    Publication date: January 15, 2004
    Applicant: CROMPTON CORPORATION
    Inventors: Kenrick M. Lewis, Chi-Lin O'Young
  • Publication number: 20030065204
    Abstract: The present invention provides a process for using nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and mixtures thereof, as sources of catalytic copper in the Direct Synthesis of trialkoxysilanes of the formula HSi(OR)3 wherein R is an alkyl group containing from 1 to 6 carbon atoms inclusive. The nanosized copper, nanosized copper oxides, nanosized copper chlorides, other nanosized copper salts, and their mixtures of this invention have average particle sizes that are in the range from about 0.1 to about 600 nanometers, preferably from about 0.1 to about 500 nanometers, and most preferably from about 0.1 to about 100 nanometers. Nanosized sources of catalytic copper afford high dispersion of catalytic sites on silicon and contribute to high reaction rates, high selectivity and high silicon conversion. The nanosized copper catalyst precursors of the invention permit the use of substantially reduced levels of copper compared to conventional practice.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 3, 2003
    Inventors: Kenrick M. Lewis, Regina Nelson Eng, Sabrina R. Cromer, Abellard T. Mereigh, Chi-Lin O'Young
  • Publication number: 20030051580
    Abstract: The present invention is a process for producing nanosized metal compounds. The preferred product is nanosized copper, nanosized copper (I) oxide, and nanosized copper (II) oxide. The process includes heating a copper metal precursor in a hydrocarbon preferably selected from alkylated benzenes, polyaromatic hydrocarbons, paraffins and/or naphthenic hydrocarbons. The heating is desirably at a temperature and time effective to convert, for example, the copper metal precursor to nanosized copper (II) oxide, nanosized copper (I) oxide and/or nanosized copper metal. Separation of the hydrocarbon is then performed. Recovering the solid product and recycle/reuse of the recovered hydrocarbon in subsequent preparations of nanosized metal and metal oxides may be performed. The nanosized metal oxides of the invention may additionally be converted to nanosized metal salts by reaction with the appropriate acids while dispersed in the hydrocarbons.
    Type: Application
    Filed: October 9, 2001
    Publication date: March 20, 2003
    Inventors: Kenrick M. Lewis, Hua Yu, Regina Nelson Eng, Sabrina R. Cromer, Chi-Lin O'Young, Abellard T. Mereigh
  • Patent number: 5846406
    Abstract: Selective hydrodesulfurization of cracked naphtha, with minimum attendant hydrogenation of olefins, is effected over a novel catalyst composition comprising a sulfided, "manganese oxide octahedral molecular sieve" supported catalyst bearing (i) at least one non-noble Group VIII metal, (ii) at least one Group VI-B metal, optionally (iii) at least one metal of Group I-A, II-A, III-B, or the lanthanide series of rare earths, and optionally (iv) at least one metal of Group I-B. The catalyst of the present invention is highly selective in minimizing the olefin saturation and the resulting octane loss in the cracked naphtha hydrodesulfurization process.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: December 8, 1998
    Assignee: Texaco Inc
    Inventors: Chakka Sudhakar, Chi-Lin O'Young
  • Patent number: 5702674
    Abstract: Manganese oxide octahedral molecular sieves are provided in which a portion of the framework manganese is substituted by at least one other metal, e.g., a transition metal.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: December 30, 1997
    Assignee: Texaco Inc.
    Inventors: Chi Lin O'Young, Yan-Fei Shen, Roberto Nguyen Dequzman, Steven Lawrence Suib
  • Patent number: 5695618
    Abstract: A method of oxidatively coupling methane onto a manganese oxide molecular sieve comprising:(a) passing methane through a microwave plasma activation flow reaction zone onto a manganese oxide molecular sieve, whereby polymer-free methane coupled products are produced; and,(b) recovering the polymer-free methane coupled products.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 9, 1997
    Assignee: Texaco Inc.
    Inventors: Chi-Lin O'Young, Yan-Fei Shen, Mark William Simon, Steven Lawrence Suib, Richard Paul Zerger
  • Patent number: 5635155
    Abstract: A process of synthesizing synthetic manganese oxide hydrates having various structures including hollandite and todorokite structure by hydrothermal synthesis. The products have a high degree of crystallinity, and thermal stability.
    Type: Grant
    Filed: September 11, 1996
    Date of Patent: June 3, 1997
    Assignee: Texaco Texaco Inc.
    Inventors: Chi-Lin O'Young, Yan-Fei Shen, Richard P. Zerger, Steven L. Suib