Patents by Inventor Chi On Chui

Chi On Chui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968838
    Abstract: A device includes a semiconductor substrate; a word line extending over the semiconductor substrate; a memory film extending along the word line, wherein the memory film contacts the word line; a channel layer extending along the memory film, wherein the memory film is between the channel layer and the word line; source lines extending along the memory film, wherein the memory film is between the source lines and the word line; bit lines extending along the memory film, wherein the memory film is between the bit lines and the word line; and isolation regions, wherein each isolation region is between a source line and a bit line, wherein each of the isolation regions includes an air gap and a seal extending over the air gap.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Chen Wang, Kai-Hsuan Lee, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20240128364
    Abstract: A semiconductor device includes a fin structure, a metal gate stack, a barrier structure and an epitaxial source/drain region. The fin structure is over a substrate. The metal gate stack is across the fin structure. The barrier structure is on opposite sides of the metal gate stack. The barrier structure comprises one or more passivation layers and one or more barrier layers, and the one or more passivation layers have a material different from a material of the one or more barrier layers. The epitaxial source/drain region is over the barrier structure.
    Type: Application
    Filed: March 27, 2023
    Publication date: April 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Ming LUNG, Chung-Ting KO, Ting-Hsiang CHANG, Sung-En LIN, Chi On CHUI
  • Publication number: 20240128375
    Abstract: A method includes forming first and second semiconductor fins and a gate structure over a substrate; forming a first and second source/drain epitaxy structures over the first and second semiconductor fins; forming an interlayer dielectric (ILD) layer over the first and second source/drain epitaxy structures; etching the gate structure and the ILD layer to form a trench; performing a first surface treatment to modify surfaces of a top portion and a bottom portion of the trench to NH-terminated; performing a second surface treatment to modify the surfaces of the top portion of the trench to N-terminated, while leaving the surfaces of the bottom portion of the trench being NH-terminated; and depositing a first dielectric layer in the trench, wherein the first dielectric layer has a higher deposition rate on the surfaces of the bottom portion of the trench than on the surfaces of the bottom portion of the trench.
    Type: Application
    Filed: March 16, 2023
    Publication date: April 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Yi CHANG, Yu Ying CHEN, Zhen-Cheng WU, Chi On CHUI
  • Patent number: 11955370
    Abstract: A system and methods of forming a dielectric material within a trench are described herein. In an embodiment of the method, the method includes introducing a first precursor into a trench of a dielectric layer, such that portions of the first precursor react with the dielectric layer and attach on sidewalls of the trench. The method further includes partially etching portions of the first precursor on the sidewalls of the trench to expose upper portions of the sidewalls of the trench. The method further includes introducing a second precursor into the trench, such that portions of the second precursor react with the remaining portions of the first precursor to form the dielectric material at the bottom of the trench.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Ting-Gang Chen, Sung-En Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui, Tai-Chun Huang, Chieh-Ping Wang
  • Patent number: 11955528
    Abstract: Semiconductor devices, FinFET devices and methods of forming the same are disclosed. One of the semiconductor devices includes a substrate and a gate strip disposed over the substrate. The gate strip includes a high-k layer disposed over the substrate, an N-type work function metal layer disposed over the high-k layer, and a barrier layer disposed over the N-type work function metal layer. The barrier layer includes at least one first film containing TiAlN, TaAlN or AlN.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi-On Chui
  • Publication number: 20240113164
    Abstract: A process for converting a portion of a dielectric fill material into a hard mask includes a nitrogen treatment or nitrogen plasma to convert a portion of the dielectric fill material into a nitrogen-like layer for serving as a hard mask to form an edge area of a device die by an etching process. After forming the edge area, another dielectric fill material is provided in the edge area. In the completed device, a gate cut area can have a gradient of nitrogen concentration at an upper portion of the gate cut dielectric of the gate cut area.
    Type: Application
    Filed: January 9, 2023
    Publication date: April 4, 2024
    Inventors: Heng-Chia Su, Li-Fong Lin, Zhen-Cheng Wu, Chi On Chui
  • Publication number: 20240113183
    Abstract: Methods for tuning effective work functions of gate electrodes in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a channel region over a semiconductor substrate; a gate dielectric layer over the channel region; and a gate electrode over the gate dielectric layer, the gate electrode including a first work function metal layer over the gate dielectric layer, the first work function metal layer including aluminum (Al); a first work function tuning layer over the first work function metal layer, the first work function tuning layer including aluminum tungsten (AlW); and a fill material over the first work function tuning layer.
    Type: Application
    Filed: November 30, 2023
    Publication date: April 4, 2024
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Weng Chang, Chi On Chui
  • Patent number: 11948843
    Abstract: A semiconductor device includes a substrate, first and second semiconductor strips, a dummy fin structure, first and second channel layers, a gate structure, and crystalline and amorphous hard mask layers. The first and second semiconductor strips extend upwardly from the substrate and each has a length extending along a first direction. The dummy fin structure is laterally between the first and second semiconductor strips. The first and second channel layers extend in the first direction above the first and second semiconductor strips and are arranged in a second direction substantially perpendicular to the substrate. The crystalline hard mask layer extends upwardly from the dummy fin structure and has an U-shaped cross section. The amorphous hard mask layer is in the crystalline hard mask layer. The amorphous hard mask layer has an U-shaped cross section conformal to the U-shaped cross section of the crystalline hard mask layer.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting Ko, Sung-En Lin, Chi-On Chui
  • Patent number: 11948981
    Abstract: A method includes forming a dummy gate stack over a semiconductor region, forming epitaxial source/drain regions on opposite sides of the dummy gate stack, removing the dummy gate stack to form a trench, depositing a gate dielectric layer extending into the trench, and depositing a work-function layer over the gate dielectric layer. The work-function layer comprises a seam therein. A silicon-containing layer is deposited to fill the seam. A planarization process is performed to remove excess portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer. Remaining portions of the silicon-containing layer, the work-function layer, and the gate dielectric layer form a gate stack.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11942329
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a semiconductor protruding structure over a substrate and surrounding the semiconductor protruding structure with an insulating layer. The method also includes forming a dielectric layer over the insulating layer. The method further includes partially removing the dielectric layer and insulating layer using a planarization process. As a result, topmost surfaces of the semiconductor protruding structure, the insulating layer, and the dielectric layer are substantially level with each other. In addition, the method includes forming a protective layer to cover the topmost surfaces of the dielectric layer. The method includes recessing the insulating layer after the protective layer is formed such that the semiconductor protruding structure and a portion of the dielectric layer protrude from a top surface of a remaining portion of the insulating layer.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Yi Kao, Che-Hao Chang, Yung-Cheng Lu, Chi On Chui
  • Patent number: 11942549
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a first liner is deposited to line a recess between a first semiconductor fin and a second semiconductor fin, the first liner comprising a first material. The first liner is annealed to transform the first material to a second material. A second liner is deposited to line the recess, the second liner comprising a third material. The second liner is annealed to transform the third material to a fourth material.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yi Kao, Yu-Cheng Shiau, Chunyao Wang, Chih-Tang Peng, Yung-Cheng Lu, Chi On Chui
  • Patent number: 11942523
    Abstract: In an embodiment, a device includes: a first nanostructure over a substrate, the first nanostructure including a channel region and a first lightly doped source/drain region, the first lightly doped source/drain region adjacent the channel region; a first epitaxial source/drain region wrapped around four sides of the first lightly doped source/drain region; an interlayer dielectric over the first epitaxial source/drain region; a source/drain contact extending through the interlayer dielectric, the source/drain contact wrapped around four sides of the first epitaxial source/drain region; and a gate stack adjacent the source/drain contact and the first epitaxial source/drain region, the gate stack wrapped around four sides of the channel region.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sai-Hooi Yeong, Pei-Yu Wang, Chi On Chui
  • Patent number: 11942556
    Abstract: A device includes a first channel layer, a second channel layer, a gate structure, a source/drain epitaxial structure, and a source/drain contact. The first channel layer and the second channel layer are arranged above the first channel layer in a spaced apart manner over a substrate. The gate structure surrounds the first and second channel layers. The source/drain epitaxial structure is connected to the first and second channel layers. The source/drain contact is connected to the source/drain epitaxial structure. The second channel layer is closer to the source/drain contact than the first channel layer is to the source/drain contact, and the first channel layer is thicker than the second channel layer.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Ru Lin, Shu-Han Chen, Yi-Shao Li, Chun-Heng Chen, Chi On Chui
  • Publication number: 20240096928
    Abstract: A semiconductor structure and manufacturing method thereof are provided. The semiconductor structure includes a substrate and a metallization structure over the substrate. The metallization structure includes a MIM structure, a first contact and a second contact. The MIM structure includes a bottom electrode layer, a dielectric layer on the bottom electrode layer, a ferroelectric layer on the dielectric layer, and a top electrode layer on the ferroelectric layer. The ferroelectric layer is substantially made of lead zirconate titanate (PZT), BaTiO3 (BTO), or barium strontium titanate (BST), and a thickness of the ferroelectric layer is greater than a thickness of the dielectric layer.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 21, 2024
    Inventors: SAI-HOOI YEONG, CHIH-YU CHANG, CHUN-YEN PENG, CHI ON CHUI
  • Patent number: 11935937
    Abstract: A semiconductor device includes a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions; and a gate structure over the fin and between the source/drain regions. The gate structure includes: a gate dielectric material around each of the nanosheets; a first liner material around the gate dielectric material; a work function material around the first liner material; a second liner material around the work function material; and a gate electrode material around at least portions of the second liner material.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11935754
    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nano structure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Yi Lee, Cheng-Lung Hung, Chi On Chui
  • Patent number: 11935624
    Abstract: A test structure for 3D memory arrays and methods of forming the same are disclosed. In an embodiment, a memory array includes a first word line over a semiconductor substrate and extending in a first direction; a second word line over the first word line and extending in the first direction; a memory film contacting the first word line and the second word line; an oxide semiconductor (OS) layer contacting a first source line and a first bit line, the memory film being between the OS layer and each of the first word line and the second word line; and a test structure over the first word line and the second word line, the test structure including a first conductive line electrically coupling the first word line to the second word line, the first conductive line extending in the first direction.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20240088244
    Abstract: Methods for forming contacts to source/drain regions and gate electrodes in low- and high-voltage devices and devices formed by the same are disclosed. In an embodiment a device includes a first channel region in a substrate adjacent a first source/drain region; a first gate over the first channel region; a second channel region in the substrate adjacent a second source/drain region, a top surface of the second channel region being below a top surface of the first channel region; a second gate over the second channel region; an ILD over the first gate and the second gate; a first contact extending through the ILD and coupled to the first source/drain region; and a second contact extending through the ILD, coupled to the second source/drain region, and having a width greater a width of the first contact and a height greater than a height of the first contact.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Meng-Han Lin, Sai-Hooi Yeong, Chi On Chui
  • Publication number: 20240088156
    Abstract: A semiconductor device includes at least one fin, a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed on the at least one fin. The second dielectric layer between the at least one fin and the first dielectric layer. A thickness of the first dielectric layer on a sidewall of the at least one fin is less than a thickness of the second dielectric layer on the sidewall of the at least one fin.
    Type: Application
    Filed: November 23, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-I Lin, Chun-Heng Chen, Ming-Ho Lin, Chi-On Chui
  • Publication number: 20240079472
    Abstract: The present disclosure provides a semiconductor device and a method for forming a semiconductor device. The semiconductor device includes a substrate, and a first gate dielectric stack over the substrate, wherein the first gate dielectric stack includes a first ferroelectric layer, and a first dielectric layer coupled to the first ferroelectric layer, wherein the first ferroelectric layer includes a first portion made of a ferroelectric material in orthorhombic phase, a second portion made of the ferroelectric material in monoclinic phase, and a third portion made of the ferroelectric material in tetragonal phase, wherein a total volume of the second portion is greater than a total volume of the first portion, and the total volume of the first portion is greater than a total volume of the third portion.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: CHUN-YEN PENG, TE-YANG LAI, BO-FENG YOUNG, CHIH-YU CHANG, SAI-HOOI YEONG, CHI ON CHUI