Patents by Inventor Chi-Yi Tsai

Chi-Yi Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996472
    Abstract: A semiconductor device and method of fabricating a semiconductor device involves formation of a trench above a fin (e.g. a fin of a FinFET device) of the semiconductor device and formation of a multi-layer dielectric structure within the trench. The profile of the multi-layer dielectric structure can be controlled depending on the application to reduce shadowing effects and reduce cut failure risk, among other possible benefits. The multi-layer dielectric structure can include two layers, three layers, or any number of layers and can have a stepped profile, a linear profile, or any other type of profile.
    Type: Grant
    Filed: February 9, 2023
    Date of Patent: May 28, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ya-Yi Tsai, Chi-Hsiang Chang, Shih-Yao Lin, Tzu-Chung Wang, Shu-Yuan Ku
  • Publication number: 20240170326
    Abstract: A manufacturing method of a semiconductor device includes at least the following steps. A sacrificial substrate is provided. An etch stop layer is formed on the sacrificial substrate. A portion of the etch stop layer is oxidized to form an oxide layer between the sacrificial substrate and the remaining etch stop layer. A capping layer is formed on the remaining etch stop layer. A device layer is formed on the capping layer. A first etching process is performed to remove the sacrificial substrate. A second etching process is performed to remove the oxide layer. A third etching process is performed to remove the remaining etch stop layer. A power rail is formed on the capping layer opposite to the device layer.
    Type: Application
    Filed: January 25, 2024
    Publication date: May 23, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Kuei-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11986763
    Abstract: A remote control system for gas detection and purification is disclosed and includes a remote control device, a gas detection module and a gas purification device. The remote control device includes a gas inlet and a gas outlet. The gas detection module is disposed in the remote control device and in communication with the gas outlet to detect the gas located in an indoor space. The gas detection module provides and outputs a gas detection datum, and the remote control device transmits an operation command via wireless transmission. The gas purification device is disposed in the indoor space and receives the operating instruction transmitted from the remote control device to be operated. When the gas purification device is under the activated state, the gas in the indoor space is purified, and the purification operation mode of the gas purification device is adjusted according to the first gas detection datum.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 21, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Chun-Yi Kuo, Yang Ku, Chang-Yen Tsai, Wei-Ming Lee
  • Patent number: 11978782
    Abstract: The present disclosure relates to a hybrid integrated circuit. In one implementation, an integrated circuit may have a first region with a first gate structure having a ferroelectric gate dielectric, at least one source associated with the first gate of the first region, and at least one drain associated with the first gate structure of the first region. Moreover, the integrated circuit may have a second region with a second gate structure having a high-? gate dielectric, at least one source associated with the second gate structure of the second region, and at least one drain associated with the second gate structure of the second region. The integrated circuit may further have at least one trench isolation between the first region and the second region.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Yi Chuang, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11944412
    Abstract: A blood pressure detection device manufactured by a semiconductor process includes a substrate, a microelectromechanical element, a gas-pressure-sensing element, a driving-chip element, an encapsulation layer and a valve layer. The substrate includes inlet apertures. The microelectromechanical element and the gas-pressure-sensing element are stacked and integrally formed on the substrate. The encapsulation layer is encapsulated and positioned on the substrate. A flowing-channel space is formed above the microelectromechanical element and the gas-pressure-sensing element. The encapsulation layer includes an outlet aperture in communication with an airbag. The driving-chip element controls the microelectromechanical element, the gas-pressure-sensing element and valve units to transport gas.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: April 2, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ying-Lun Chang, Ching-Sung Lin, Chi-Feng Huang, Yung-Lung Han, Chang-Yen Tsai, Wei-Ming Lee, Chun-Yi Kuo, Tsung-I Lin
  • Patent number: 11937903
    Abstract: A blood pressure device includes a first blood pressure measuring device, a second blood pressure measuring device, and a controller. The first blood pressure measuring device is to be worn on a first position of a wrist so as to obtain a first blood pressure information of the first position. The second blood pressure measuring device is to be worn on a second position of the wrist so as to obtain a second blood pressure information of the second position. The controller is electrically coupled to the first blood pressure measuring device and the second blood pressure measuring device so as to adjust tightness between the expanders and the user's skin, respectively. The controller receives, processes, and calculates a pulse transit time between the first blood pressure information and the second blood pressure information, and the controller obtains at least one blood pressure value based on the pulse transit time.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: March 26, 2024
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai, Wei-Ming Lee, Chun-Yi Kuo, Chin-Wen Hsieh
  • Patent number: 11940737
    Abstract: A method includes receiving a device design layout and a scribe line design layout surrounding the device design layout. The device design layout and the scribe line design layout are rotated in different directions. An optical proximity correction (OPC) process is performed on the rotated device design layout and the rotated scribe line design layout. A reticle includes the device design layout and the scribe line design layout is formed after performing the OPC process.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Patent number: 11935804
    Abstract: In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
    Type: Grant
    Filed: April 10, 2023
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Sung Huang, Ming Hung Tseng, Yen-Liang Lin, Hao-Yi Tsai, Chi-Ming Tsai, Chung-Shi Liu, Chih-Wei Lin, Ming-Che Ho
  • Patent number: 11923237
    Abstract: A manufacturing method of a semiconductor device includes at least the following steps. A sacrificial substrate is provided. An epitaxial layer is formed on the sacrificial substrate. An etch stop layer is formed on the epitaxial layer. Carbon atoms are implanted into the etch stop layer. A capping layer and a device layer are formed on the etch stop layer. A handle substrate is bonded to the device layer. The sacrificial substrate, the epitaxial layer, and the etch stop layer having the carbon atoms are removed from the handle substrate.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Ming Chen, Kuei-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11923349
    Abstract: A semiconductor structure includes a die and a first connector. The first connector is disposed on the die. The first connector includes a first connecting housing, a first connecting element and a first connecting portion. The first connecting element is electrically connected to the die and disposed at a first side of the first connecting housing. The first connecting portion is disposed at a second side different from the first side of the first connecting housing, wherein the first connecting portion is one of a hole and a protrusion with respect to a surface of the second side of the first connecting housing.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Hui Lai, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 9996755
    Abstract: A method and an image processing apparatus for image-based object feature description are provided. In the method, an object of interest in an input image is detected and a centroid and a direction angle of the object of interest are calculated. Next, a contour of the object of interest is recognized and a distance and a relative angle of each pixel on the contour to the centroid are calculated, in which the relative angle of each pixel is calibrated by using the direction angle. Then, a 360-degree range centered on the centroid is equally divided into multiple angle intervals and the pixels on the contour are separated into multiple groups according to a range covered by each angle interval. Afterwards, a maximum among the distances of the pixels in each group is obtained and used as a feature value of the group. Finally, the feature values of the groups are normalized and collected to form a feature vector that serves as a feature descriptor of the object of interest.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: June 12, 2018
    Assignee: TAMKANG UNIVERSITY
    Inventors: Chi-Yi Tsai, Hsien-Chen Liao
  • Publication number: 20180025239
    Abstract: A method and an image processing apparatus for image-based object feature description are provided. In the method, an object of interest in an input image is detected and a centroid and a direction angle of the object of interest are calculated. Next, a contour of the object of interest is recognized and a distance and a relative angle of each pixel on the contour to the centroid are calculated, in which the relative angle of each pixel is calibrated by using the direction angle. Then, a 360-degree range centered on the centroid is equally divided into multiple angle intervals and the pixels on the contour are separated into multiple groups according to a range covered by each angle interval. Afterwards, a maximum among the distances of the pixels in each group is obtained and used as a feature value of the group. Finally, the feature values of the groups are normalized and collected to form a feature vector that serves as a feature descriptor of the object of interest.
    Type: Application
    Filed: December 27, 2016
    Publication date: January 25, 2018
    Applicant: TAMKANG UNIVERSITY
    Inventors: Chi-Yi Tsai, Hsien-Chen Liao
  • Patent number: 9076218
    Abstract: An image dynamic range compression with local contrast enhancement method for an image processing device is provided. The method includes the following steps. A plurality of input pixels of an image including a first input pixel are received, and an input luminance pixel value of each of the input pixels as well as a darkness intensity level of the image are obtained. A filter result of the first input pixel is obtained according to filter computation on the input luminance pixel values; an image-related parameter is obtained according to image-related computation on the darkness intensity level. The image-related parameter, the filter result of the first input pixel, and the input luminance pixel value of the first input pixel are transformed into an output luminance pixel value of the first input pixel according to a non-linear intensity transfer function and a dynamic range compression with local contrast enhancement algorithm.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: July 7, 2015
    Assignee: TAMKANG UNIVERSITY
    Inventors: Chi-Yi Tsai, Chih-Hung Huang
  • Patent number: 9031320
    Abstract: An image dynamic range compression method for an image processing device is provided. The method includes receiving a plurality of input pixels which include a first input pixel, obtaining a luminance pixel value of each of the input pixels, executing a filter execution according to the luminance pixel values of the input pixels to obtain a filter result corresponding to the first input pixel, transforming the filter result into a function result according to a function, and obtaining an output luminance pixel value of the first input pixel according to the luminance pixel value of the first input pixel and a transforming ratio between the function result and the filter result. Accordingly, the method reserves the details in an image and color information, and increases the execution speed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Tamkang University
    Inventor: Chi-Yi Tsai
  • Publication number: 20140254928
    Abstract: An image dynamic range compression with local contrast enhancement method for an image processing device is provided. The method includes the following steps. A plurality of input pixels of an image including a first input pixel are received, and an input luminance pixel value of each of the input pixels as well as a darkness intensity level of the image are obtained. A filter result of the first input pixel is obtained according to filter computation on the input luminance pixel values; an image-related parameter is obtained according to image-related computation on the darkness intensity level. The image-related parameter, the filter result of the first input pixel, and the input luminance pixel value of the first input pixel are transformed into an output luminance pixel value of the first input pixel according to a non-linear intensity transfer function and a dynamic range compression with local contrast enhancement algorithm.
    Type: Application
    Filed: June 4, 2013
    Publication date: September 11, 2014
    Applicant: TAMKANG UNIVERSITY
    Inventors: Chi-Yi Tsai, Chih-Hung Huang
  • Publication number: 20140003715
    Abstract: An image dynamic range compression method for an image processing device is provided. The method includes receiving a plurality of input pixels which include a first input pixel, obtaining a luminance pixel value of each of the input pixels, executing a filter execution according to the luminance pixel values of the input pixels to obtain a filter result corresponding to the first input pixel, transforming the filter result into a function result according to a function, and obtaining an output luminance pixel value of the first input pixel according to the luminance pixel value of the first input pixel and a transforming ratio between the function result and the filter result. Accordingly, the method reserves the details in an image and color information, and increases the execution speed.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 2, 2014
    Applicant: TAMKANG UNIVERSITY
    Inventor: Chi-Yi Tsai
  • Patent number: 8422813
    Abstract: An image processing method includes the following steps. First, noise of a first image is filtered, and the first image is converted to obtain a first luminance signal. Second, a color space converting process is performed upon the first image to obtain a second image. Third, the second image is stored and outputted. Fourth, noise of the second image is filtered, and the second image is converted to obtain a second luminance signal. Fifth, a linear computing is performed to obtain a third image. Sixth, an error compensation is performed upon the third image and the second image, and the third image is outputted. Seventh, the color space converting process is performed to obtain and output a fourth image. The linear computing and the error compensation are performed upon a single image to filter the noise of the images, and thus a load of a system may be decreased.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: April 16, 2013
    Assignee: Asustek Computer Inc.
    Inventor: Chi-Yi Tsai
  • Patent number: 8390550
    Abstract: The invention relates to a method and module for regulating color distribution. In this method, a reference point in a first gamut and a second reference point in a second gamut are found, and then the first gamut is converted to the second gamut based on the first and second reference point.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 5, 2013
    Assignee: ASUSTek Computers Inc.
    Inventor: Chi-Yi Tsai
  • Patent number: 8374427
    Abstract: An image processing method and an image processing system adapted to processing image information with multiple process pixels are disclosed. The image processing method includes steps of: setting a group of parameters; establishing a luminance lookup table; establishing a chrominance-luminance lookup table; retrieving the image information; determining a format of the image information; and if the format of the image is a first format, utilizing the chrominance-luminance lookup table to generate an adjusted chrominance and a first adjusted luminance corresponding to one of the process pixels; if the format of the image is a second format, utilizing the chrominance-luminance lookup table and the luminance lookup table to generate an adjusted chrominance, a first adjusted luminance, and a second adjusted luminance corresponding to one of the process pixels.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 12, 2013
    Assignee: Asustek Computer Inc.
    Inventor: Chi Yi Tsai
  • Patent number: 8243201
    Abstract: The invention relates to a method and module for regulating saturation degree. In this method, a curvature of a special function in all position is regulated by a saturation parameter to obtain a regulated function. A color input signal is assigned as an independent variable of the regulated function to calculate a color output signal corresponding to the color input signal.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: August 14, 2012
    Assignee: ASUSTek Computer Inc.
    Inventor: Chi-Yi Tsai