Patents by Inventor Chia-Chang Chen

Chia-Chang Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240176584
    Abstract: An apparatus comprising: a first plurality of inputs representing an activation input vector; a second plurality of inputs representing a weight input vector; an analog multiplier-and-accumulator to generate a first analog voltage representing a first multiply-and-accumulate result for the said first inputs and the second inputs; a voltage multiplier that takes the said first analog voltage and produces a second analog voltage representing, a second multiply-and-accumulate result by multiplying at least one scaling factor to the first analog voltage; an analog to digital converter configured to convert the said second analog voltage multiply-and-accumulate result into a digital signal using a limited-precision operation during a neural network inference operation; and a hardware controller configured to determine the at least one scaling factor based on the first multiply-and-accumulate result, or a software controller configured to determine the at least one scaling factor based on the first multiply-and-acc
    Type: Application
    Filed: November 29, 2022
    Publication date: May 30, 2024
    Inventors: Chia-Yu Chen, Andrea Fasoli, Ankur Agrawal, Kyu-hyoun Kim, Chi-Chun LIU, Mauricio J. Serrano, Monodeep Kar, Naigang Wang, Leland Chang
  • Patent number: 11994809
    Abstract: The present disclosure provides an exhaust system for discharging from semiconductor manufacturing equipment a hazardous gas. The exhaust system includes: a main exhaust pipe positioned above the semiconductor manufacturing equipment and having a top surface and a bottom surface extending parallel to the top surface; a first branch pipe including an upstream end coupled to a source of a gas mixture and a downstream end connected to the main exhaust pipe through the top surface; a second branch pipe including an upstream end and a downstream end connected to the main exhaust pipe through the bottom surface; and a detector configured to detect presence of the hazardous gas in the second branch pipe.
    Type: Grant
    Filed: June 20, 2023
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Fu Lin, Shih-Chang Shih, Chia-Chen Chen
  • Patent number: 11996137
    Abstract: A memory device for CIM has a memory array including a plurality of memory cells arranged in an array of rows and columns. The memory cells have a first group of memory cells and a second group of memory cells. Each row of the array has a corresponding word line, with each memory cell of a row of the array coupled to the corresponding word line. Each column of the array has a corresponding bit line, with each memory cell of a column of the array coupled to the corresponding bit line. A control circuit is configured to select the first group of memory cells or the second group of memory cells in response to a group enable signal.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-An Chang, Yu-Lin Chen, Chia-Fu Lee
  • Patent number: 11990375
    Abstract: Methods of cutting fins, and structures formed thereby, are described. In an embodiment, a structure includes a first fin on a substrate, a second fin on the substrate, and a fin cut-fill structure disposed between the first fin and the second fin. The first fin and the second fin are longitudinally aligned. The fin cut-fill structure includes an insulating liner and a fill material on the insulating liner. The insulating liner abuts a first sidewall of the first fin and a second sidewall of the second fin. The insulating liner includes a material with a band gap greater than 5 eV.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: May 21, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Wen Huang, Jaming Chang, Kai Hung Cheng, Chia-Hui Lin, Jei Ming Chen
  • Patent number: 11982936
    Abstract: A method of fabricating a photomask includes selectively exposing portions of a photomask blank to radiation to change an optical property of the portions of the photomask blank exposed to the radiation, thereby forming a pattern of exposed portions of the photomask blank and unexposed portions of the photomask blank. The pattern corresponds to a pattern of semiconductor device features.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: May 14, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsin-Chang Lee, Ping-Hsun Lin, Yen-Cheng Ho, Chih-Cheng Lin, Chia-Jen Chen
  • Patent number: 11985427
    Abstract: A display device includes a display module and a camera module. The camera module includes a first housing, a second housing and a camera unit. The first housing is movably disposed on the display module. The second housing is separably connected to the first housing. The camera unit is disposed on the second housing. The second housing is able to move with the first housing in relative to the display module, such that the camera unit is exposed from the display module or hidden in the display module. When the second housing is separated from the first housing, the second housing is able to rotate in relative to the first housing, so as to adjust an orientation of the camera unit.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: May 14, 2024
    Assignees: Inventec (Pudong) Technology Corp., Inventec Corporation
    Inventors: Chien-Chang Chen, Chin-Yi Lin, Chia-Chen Chen, Chi-Zen Peng
  • Publication number: 20240151935
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 8, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240152029
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 2, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151936
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240155234
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 27, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Publication number: 20240151932
    Abstract: An optical element driving mechanism is provided. The optical element driving mechanism includes a movable portion, a fixed portion, and a driving assembly. The movable portion is used to connect the optical element. The movable portion may move relative to the fixed portion. The driving assembly is used to drive the movable portion to move relative to the fixed portion.
    Type: Application
    Filed: March 28, 2023
    Publication date: May 9, 2024
    Inventors: Hsiao-Hsin HU, Chih-Wen CHIANG, Chia-Che WU, Yu-Chiao LO, Yi-Ho CHEN, Chao-Chang HU, Sin-Jhong SONG
  • Patent number: 11978677
    Abstract: In an embodiment, a method includes: placing a wafer on an implanter platen, the wafer including alignment marks; measuring a position of the wafer by measuring positions of the alignment marks with one or more cameras; determining an angular displacement between the position of the wafer and a reference position of the wafer; and rotating the implanter platen by the angular displacement.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: May 7, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20240134268
    Abstract: A mask for use in a semiconductor lithography process includes a substrate, a mask pattern disposed on the substrate, and a light absorbing border surrounding the mask pattern. The light absorbing border is inset from at least two edges of the substrate to define a peripheral region outside of the light absorbing border. In some designs, a first peripheral region extends from an outer perimeter of the light absorbing border to a first edge of the substrate, and a second peripheral region that extends from the outer perimeter of the light absorbing border to a second edge of the substrate, where the first edge of the substrate and the second edge of the substrate are on opposite sides of the mask pattern.
    Type: Application
    Filed: January 3, 2024
    Publication date: April 25, 2024
    Inventors: Chien-Cheng Chen, Huan-Ling Lee, Ta-Cheng Lien, Chia-Jen Chen, Hsin-Chang Lee
  • Publication number: 20240128876
    Abstract: A switching control circuit for use in controlling a resonant flyback power converter generates a first driving signal and a second driving signal. The first driving signal is configured to turn on the first transistor to generate a first current to magnetize a transformer and charge a resonant capacitor. The transformer and charge a resonant capacitor are connected in series. The second driving signal is configured to turn on the second transistor to generate a second current to discharge the resonant capacitor. During a power-on period of the resonant flyback power converter, the second driving signal includes a plurality of short-pulses configured to turn on the second transistor for discharging the resonant capacitor. A pulse-width of the short-pulses of the second driving signal is short to an extent that the second current does not exceed a current limit threshold.
    Type: Application
    Filed: June 15, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Fu-Ciao Syu, Chia-Hsien Yang, Hsin-Yi Wu
  • Publication number: 20240120844
    Abstract: A resonant flyback power converter includes: a first and a second transistors which form a half-bridge circuit for switching a transformer and a resonant capacitor to generate an output voltage; a current-sense device for sensing a switching current of the half-bridge circuit to generate a current-sense signal; and a switching control circuit generating a first and a second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal controls the half-bridge circuit to generate a positive current to magnetize the transformer and charge the resonant capacitor. The turn-on of the second driving signal controls the half-bridge circuit to generate a negative current to discharge the resonant capacitor. The switching control circuit turns off the first transistor when the positive current exceeds a positive-over-current threshold, and/or, turns off the second transistor when the negative current exceeds a negative-over-current threshold.
    Type: Application
    Filed: April 10, 2023
    Publication date: April 11, 2024
    Inventors: Kun-Yu LIN, Ta-Yung YANG, Yu-Chang CHEN, Hsin-Yi WU, Fu-Ciao SYU, Chia-Hsien YANG
  • Publication number: 20240122078
    Abstract: A semiconductor memory device includes a substrate having a conductor region thereon, an interlayer dielectric layer on the substrate, and a conductive via electrically connected to the conductor region. The conductive via has a lower portion embedded in the interlayer dielectric layer and an upper portion protruding from a top surface of the interlayer dielectric layer. The upper portion has a rounded top surface. A storage structure conformally covers the rounded top surface.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Chang Hsu, Tang-Chun Weng, Cheng-Yi Lin, Yung-Shen Chen, Chia-Hung Lin
  • Patent number: 11953614
    Abstract: A method for measuring coordinate position include detecting the distance of a target relative to a portable electronic device to generate a measurement signal corresponding to the distance, sensing a relative position of the target to generate a azimuth angle corresponding to the relative position, detecting the movement of the portable electronic device to generate an inertial signal corresponding to the movement, obtaining positioning information of the portable electronic device, converting the measurement signal into distance data, converting the inertial signal into a tilt angle, calculating coordinate difference information with the tilt angle, the distance data and the azimuth angle, and calculating coordinate position of the target with the positioning information and the coordinate difference information.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: April 9, 2024
    Assignee: Getac Technology Corporation
    Inventors: Chia-Chang Chiu, Wei-Rong Chen
  • Publication number: 20240113112
    Abstract: Methods of cutting gate structures and fins, and structures formed thereby, are described. In an embodiment, a substrate includes first and second fins and an isolation region. The first and second fins extend longitudinally parallel, with the isolation region disposed therebetween. A gate structure includes a conformal gate dielectric over the first fin and a gate electrode over the conformal gate dielectric. A first insulating fill structure abuts the gate structure and extends vertically from a level of an upper surface of the gate structure to at least a surface of the isolation region. No portion of the conformal gate dielectric extends vertically between the first insulating fill structure and the gate electrode. A second insulating fill structure abuts the first insulating fill structure and an end sidewall of the second fin. The first insulating fill structure is disposed laterally between the gate structure and the second insulating fill structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Ryan Chia-Jen Chen, Cheng-Chung Chang, Shao-Hua Hsu, Yu-Hsien Lin, Ming-Ching Chang, Li-Wei Yin, Tzu-Wen Pan, Yi-Chun Chen
  • Publication number: 20240113113
    Abstract: Methods of cutting gate structures, and structures formed, are described. In an embodiment, a structure includes first and second gate structures over an active area, and a gate cut-fill structure. The first and second gate structures extend parallel. The active area includes a source/drain region disposed laterally between the first and second gate structures. The gate cut-fill structure has first and second primary portions and an intermediate portion. The first and second primary portions abut the first and second gate structures, respectively. The intermediate portion extends laterally between the first and second primary portions. First and second widths of the first and second primary portions along longitudinal midlines of the first and second gate structures, respectively, are each greater than a third width of the intermediate portion midway between the first and second gate structures and parallel to the longitudinal midline of the first gate structure.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Chang Hung, Chia-Jen Chen, Ming-Ching Chang, Shu-Yuan Ku, Yi-Hsuan Hsiao, I-Wei Yang
  • Publication number: 20240096677
    Abstract: A method of correcting a misalignment of a wafer on a wafer holder and an apparatus for performing the same are disclosed. In an embodiment, a semiconductor alignment apparatus includes a wafer stage; a wafer holder over the wafer stage; a first position detector configured to detect an alignment of a wafer over the wafer holder in a first direction; a second position detector configured to detect an alignment of the wafer over the wafer holder in a second direction; and a rotational detector configured to detect a rotational alignment of the wafer over the wafer holder.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo