Patents by Inventor Chia-Shiung Tsai

Chia-Shiung Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11417520
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a first III-V layer over the substrate, wherein the first III-V layer includes a first dopant type. The semiconductor structure further includes a second III-V layer over the first III-V layer, wherein the second III-V layer has a second dopant type opposite the first dopant type. The semiconductor structure further includes a third III-V layer over the second III-V layer, wherein the third III-V layer has the first dopant type. The semiconductor structure further includes a fourth III-V layer over the third III-V layer, the fourth III-V layer having the second dopant type. The semiconductor structure further includes an active layer over the fourth III-V layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: August 16, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11404484
    Abstract: Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN-junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Wei Liang, Chia-Shiung Tsai, Cheng-Yuan Tsai, Hsing-Lien Lin
  • Publication number: 20220238662
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Application
    Filed: February 24, 2022
    Publication date: July 28, 2022
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Publication number: 20220216052
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20220208607
    Abstract: An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Hsun-Chung Kuang, Yen-Chang Chu, Cheng-Tai Hsiao, Ping-Yin Liu, Lan-Lin Chao, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 11367832
    Abstract: A method of making a magnetoresistive random access memory (MRAM) device includes forming a bottom conductive layer. The method includes forming an anti-ferromagnetic layer over the bottom conductive layer and forming a tunnel layer over the anti-ferromagnetic layer. The method includes forming a free magnetic layer, having a magnetic moment aligned in a direction that is adjustable by applying an electromagnetic field, over the tunnel layer, wherein the anti-ferromagnetic layer, the tunnel layer and the free magnetic layer are part of a magnetic tunnel junction (MTJ) unit. The method includes forming a top conductive layer over the free magnetic layer. The method includes performing at least one lithographic process to remove portions of the bottom conductive layer, the MTJ unit and the top conductive layer that is uncovered by a photoresist layer. The method includes removing a portion of a sidewall of the MTJ unit.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: June 21, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20220189997
    Abstract: The present disclosure relates an integrated chip. The integrated chip includes a polysilicon layer arranged on an upper surface of a base substrate. A dielectric layer is arranged over the polysilicon layer, and an active semiconductor layer is arranged over the dielectric layer. A semiconductor material is arranged vertically on the upper surface of the base substrate and laterally beside the active semiconductor layer.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 16, 2022
    Inventors: Eugene I-Chun Chen, Kuan-Liang Liu, Szu-Yu Wang, Chia-Shiung Tsai, Ru-Liang Lee, Chih-Ping Chao, Alexander Kalnitsky
  • Publication number: 20220189928
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Patent number: 11348935
    Abstract: A device comprises a control gate structure and a memory gate structure over a substrate, a charge storage layer formed between the control gate structure and the memory gate structure, a first spacer along a sidewall of the memory gate structure, a second spacer along a sidewall of the control gate structure, an oxide layer over a top surface of the memory gate structure, a top spacer over the oxide layer, a first drain/source region formed in the substrate and adjacent to the memory gate structure and a second drain/source region formed in the substrate and adjacent to the control gate structure.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chang-Ming Wu, Wei Cheng Wu, Shih-Chang Liu, Harry-Hak-Lay Chuang, Chia-Shiung Tsai
  • Patent number: 11329148
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes an AlN seed layer in direct contact with the substrate. The AlN seed layer includes an AlN first seed sublayer, and an AlN second seed sublayer, wherein a portion of the AlN seed layer closest to the substrate includes carbon dopants and has a different lattice structure from a substrate lattice structure. The semiconductor device includes a graded layer in direct contact with the AlN seed layer. The graded layer includes a first graded sublayer including AlGaN, a second graded sublayer including AlGaN, and a third graded sublayer including AlGaN. The semiconductor device includes a channel layer over the graded layer. The semiconductor device includes an active layer over the channel layer, wherein the active layer has a band gap discontinuity with the channel layer.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 10, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 11282697
    Abstract: A method includes performing a plasma activation on a surface of a first package component, removing oxide regions from surfaces of metal pads of the first package component, and performing a pre-bonding to bond the first package component to a second package component.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xin-Hua Huang, Ping-Yin Liu, Hung-Hua Lin, Hsun-Chung Kuang, Yuan-Chih Hsieh, Lan-Lin Chao, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 11276587
    Abstract: An apparatus for and a method of bonding a first substrate and a second substrate are provided. In an embodiment a first wafer chuck has a first curved surface and a second wafer chuck has a second curved surface. A first wafer is placed on the first wafer chuck and a second wafer is placed on a second wafer chuck, such that both the first wafer and the second wafer are pre-warped prior to bonding. Once the first wafer and the second wafer have been pre-warped, the first wafer and the second wafer are bonded together.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: March 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hui Huang, Chun-Han Tsao, Sheng-Chau Chen, Yeur-Luen Tu, Chia-Shiung Tsai, Xiaomeng Chen
  • Patent number: 11270978
    Abstract: A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: March 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Fa Lu, Cheng-Yuan Tsai, Yeur-Luen Tu, Chia-Shiung Tsai
  • Publication number: 20220069068
    Abstract: Various embodiments of the present application are directed towards a method for forming a metal-insulator-metal (MIM) capacitor comprising an enhanced interfacial layer to reduce breakdown failure. In some embodiments, a bottom electrode layer is deposited over a substrate. A native oxide layer is formed on a top surface of the bottom electrode layer and has a first adhesion strength with the top surface. A plasma treatment process is performed to replace the native oxide layer with an interfacial layer. The interfacial layer is conductive and has a second adhesion strength with the top surface of the bottom electrode layer, and the second adhesion strength is greater than the first adhesion strength. An insulator layer is deposited on the interfacial layer. A top electrode layer is deposited on the insulator layer. The top and bottom electrode layers, the insulator layer, and the interfacial layer are patterned to form a MIM capacitor.
    Type: Application
    Filed: October 14, 2021
    Publication date: March 3, 2022
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Chia-Shiung Tsai, Chung-Yi Yu, Rei-Lin Chu
  • Patent number: 11264469
    Abstract: Various embodiments of the present application are directed to a method for forming a thin semiconductor-on-insulator (SOI) substrate without implantation radiation and/or plasma damage. In some embodiments, a device layer is epitaxially formed on a sacrificial substrate and an insulator layer is formed on the device layer. The insulator layer may, for example, be formed with a net charge that is negative or neutral. The sacrificial substrate is bonded to a handle substrate, such that the device layer and the insulator layer are between the sacrificial and handle substrates. The sacrificial substrate is removed, and the device layer is cyclically thinned until the device layer has a target thickness. Each thinning cycle comprises oxidizing a portion of the device layer and removing oxide resulting from the oxidizing.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: March 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ta Wu, Chia-Shiung Tsai, Jiech-Fun Lu, Kuo-Hwa Tzeng, Shih-Pei Chou, Yu-Hung Cheng, Yeur-Luen Tu
  • Patent number: 11258007
    Abstract: An integrated circuit device includes a substrate and a magnetic tunneling junction (MTJ). The MTJ includes at least a pinned layer, a barrier layer, and a free layer. The MTJ is formed over a surface of the substrate. Of the pinned layer, the barrier layer, and the free layer, the free layer is formed first and is closest to the surface. This enables a spacer to be formed over a perimeter region of the free layer prior to etching the free layer. Any damage to the free layer that results from etching or other free layer edge-defining process is kept at a distance from the tunneling junction by the spacer.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hang Huang, Fu-Ting Sung, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20220028994
    Abstract: A method of forming a semiconductor device includes: forming an etch stop layer over a substrate; forming a first diffusion barrier layer over the etch stop layer; forming a semiconductor device layer over the first diffusion barrier layer, the semiconductor device layer including a transistor; forming a first interconnect structure over the semiconductor device layer at a front side of the semiconductor device layer, the first interconnect structure electrically coupled to the transistor; attaching the first interconnect structure to a carrier; removing the substrate, the etch stop layer, and the first diffusion barrier layer after the attaching; and forming a second interconnect structure at a backside of the semiconductor device layer after the removing.
    Type: Application
    Filed: December 30, 2020
    Publication date: January 27, 2022
    Inventors: Eugene I-Chun Chen, Ru-Liang Lee, Chia-Shiung Tsai, Chen-Hao Chiang
  • Patent number: 11222896
    Abstract: A semiconductor arrangement includes an active region including a semiconductor device. The semiconductor arrangement includes a capacitor. The capacitor includes a first electrode over at least one dielectric layer over the active region. The first electrode surrounds an open space within the capacitor. The first electrode has a non-linear first electrode sidewall.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chern-Yow Hsu, Chen-Jong Wang, Chia-Shiung Tsai, Ming Chyi Liu, Shih-Chang Liu, Xiaomeng Chen
  • Patent number: 11167982
    Abstract: A semiconductor arrangement and methods of formation are provided. The semiconductor arrangement includes a micro-electro mechanical system (MEMS). A via opening is formed through a substrate, first dielectric layer and a first plug of the MEMS. The first plug comprises a first material, where the first material has an etch selectivity different than an etch selectivity of the first dielectric layer. The different etch selectivity of first plug allows the via opening to be formed relatively quickly and with a relatively high aspect ratio and desired a profile, as compared to forming the via opening without using the first plug.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: November 9, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Chung-Yen Chou, Lee-Chuan Tseng, Chia-Shiung Tsai, Ru-Liang Lee
  • Patent number: 11158797
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai