Patents by Inventor Chia-Yu Chang

Chia-Yu Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990258
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, a conductive filler, and a titanium-containing dielectric filler. The polymer matrix has a fluoropolymer. The titanium-containing dielectric filler has a compound represented by a general formula of MTiO3, wherein the M represents transition metal or alkaline earth metal. The total volume of the PTC material layer is calculated as 100%, and the titanium-containing dielectric filler accounts to for 5-15% by volume of the PTC material layer.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: May 21, 2024
    Assignee: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Hsiu-Che Yen, Yung-Hsien Chang, Cheng-Yu Tung, Chen-Nan Liu, Chia-Yuan Lee, Yu-Chieh Fu, Yao-Te Chang, Fu-Hua Chu
  • Publication number: 20240162833
    Abstract: A power supply unit supplies power to a load, and the power supply unit includes a power factor corrector, a DC conversion module, and an isolated conversion module. The power factor corrector is plugged into a first main circuit board and converts an AC power into a DC power. The DC conversion module is plugged into the first main circuit board and converts the DC power into a main power. The isolated conversion module includes a bus capacitor, the bus capacitor is coupled to the DC conversion module through a first power copper bar, and coupled to the power factor corrector through a second power copper bar. The first power copper bar and the second power copper bar are arranged on a side opposite to the first main circuit board, and are arranged in parallel with the first main circuit board.
    Type: Application
    Filed: November 13, 2023
    Publication date: May 16, 2024
    Inventors: Yi-Sheng CHANG, Cheng-Chan HSU, Chia-Wei CHU, Chun-Yu YANG, Deng-Cyun HUANG, Yi-Hsun CHIU, Chien-An LAI, Yu-Tai WANG, Chi-Shou HO, Zhi-Yuan WU, Ko-Wen LU
  • Publication number: 20240161843
    Abstract: An anti-fuse memory device includes an anti-fuse module, a reference current circuit and a controller. A write enable signal enables a write controller and a write buffer of the anti-fuse module to program a selected anti-fuse memory cell in an anti-fuse array of the anti-fuse module, and a timing controller of the anti-fuse module stops a program operation of the anti-fuse array after a sense amplifier of the anti-fuse module changes a state of a readout data signal for a predetermined time duration.
    Type: Application
    Filed: September 20, 2023
    Publication date: May 16, 2024
    Applicant: eMemory Technology Inc.
    Inventors: Chia-Fu Chang, Chun-Hung Lin, Jen-Yu Peng, You-Ruei Chuang
  • Publication number: 20240161844
    Abstract: An antifuse-type non-volatile memory and a control method for the antifuse-type non-volatile memory are provided. During a program action of a program cycle, a timing controller generates a timing control signal. According to the timing control signal, a word line driver is controlled to provide an on voltage and an off voltage to an activated word line. In a total time period of plural on periods, the program current is sufficient to rupture a gate oxide layer of an antifuse transistor in the selected memory cell, and a heating process is completed. Consequently, the gate oxide layer of the antifuse transistor is in a solid rupture state. Consequently, the program action can be successfully performed on the selected memory cell.
    Type: Application
    Filed: September 20, 2023
    Publication date: May 16, 2024
    Inventors: Chia-Fu CHANG, Jen-Yu PENG, Ming-Hsuan TAN
  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Patent number: 11978669
    Abstract: The present disclosure provides a semiconductor structure. The structure includes a semiconductor substrate, a gate stack over a first portion of a top surface of the semiconductor substrate; and a laminated dielectric layer over at least a portion of a top surface of the gate stack. The laminated dielectric layer includes at least a first sublayer and a second sublayer. The first sublayer is formed of a material having a dielectric constant lower than a dielectric constant of a material used to form the second sublayer and the material used to form the second sublayer has an etch selectivity higher than an etch selectivity of the material used to form the first sublayer.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: May 7, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Chuang, Chia-Hao Chang, Sheng-Tsung Wang, Lin-Yu Huang, Tien-Lu Lin, Yu-Ming Lin, Chih-Hao Wang
  • Publication number: 20240140765
    Abstract: An overhead hoist transfer apparatus includes a rail assembly including a straight rail having an empty section, and a curved rail having a curved empty section; an engine including a first LSD having first and second wheels at two sides respectively; and a second LSD having third and fourth wheels at two sides respectively; a moving carriage driven by the engine and suspended from the rail assembly; first and second guide wheels disposed on the first LSD; third and fourth guide wheels disposed on the second LSD; and two guide boards disposed above a joining point of the straight rail and the curved rail. An elevation of the guide boards is equal to that of the guide wheels. The guide board includes a straight edge and a curved edge.
    Type: Application
    Filed: September 27, 2023
    Publication date: May 2, 2024
    Inventors: Jung-Chieh Chang, Yi-Sheng Chen, Jen-Yung Hsiao, Chia-Fu Hsiao, Wei-Qi Lao, Chen-Chih Chan, Caung-Yu Liu
  • Publication number: 20240145132
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, and a conductive filler. The polymer matrix has a fluoropolymer. The total volume of the PTC material layer is calculated as 100%, and the fluoropolymer accounts for 47-62% by volume of the PTC material layer. The fluoropolymer has a melt viscosity higher than 3000 Pa·s.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 2, 2024
    Inventors: CHENG-YU TUNG, CHEN-NAN LIU, Chia-Yuan Lee, HSIU-CHE YEN, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240145133
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a first conductive filler. The polymer matrix includes a polyolefin-based polymer and a fluoropolymer. The fluoropolymer has a melt flow index higher than 1.9 g/10 min, and the polyolefin-based polymer and the fluoropolymer together form an interpenetrating polymer network (IPN). The first conductive filler has a metal-ceramic compound dispersed in the polymer matrix.
    Type: Application
    Filed: April 5, 2023
    Publication date: May 2, 2024
    Inventors: CHEN-NAN LIU, YUNG-HSIEN CHANG, CHENG-YU TUNG, HSIU-CHE YEN, Chia-Yuan LEE, Yao-Te CHANG, FU-HUA CHU
  • Patent number: 11973050
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes an interconnect structure overlying a semiconductor substrate and comprising a conductive wire. A passivation structure overlies the interconnect structure. An upper conductive structure overlies the passivation structure and comprises a first conductive layer, a dielectric layer, and a second conductive layer. The first conductive layer is disposed between the dielectric layer and the passivation structure. The second conductive layer extends along a top surface of the dielectric layer and penetrates through the first conductive layer and the passivation structure to the conductive wire.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: April 30, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Yu Lin, Yao-Wen Chang, Chia-Wen Zhong, Yen-Liang Lin
  • Patent number: 11963969
    Abstract: Provided is a pharmaceutical composition including gastrodin and a use thereof for the prevention or the treatment of amyotrophic lateral sclerosis. The pharmaceutical composition is effective in reducing neuronal axon degeneration and neurofibromin accumulation, improving symptoms of amyotrophic lateral sclerosis and extending life of patients of amyotrophic lateral sclerosis.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: April 23, 2024
    Assignee: BUDDHIST TZU CHI MEDICAL FOUNDATION
    Inventors: Chia-Yu Chang, Shinn-Zong Lin, Hsiao-Chien Ting, Hui-I Yang, Horng-Jyh Harn, Hong-Lin Su, Ching-Ann Liu, Yu-Shuan Chen, Tzyy-Wen Chiou, Tsung-Jung Ho
  • Patent number: 11967615
    Abstract: Embodiments of the present invention are directed to dual threshold voltage (VT) channel devices and their methods of fabrication. In an example, a semiconductor device includes a gate stack disposed on a substrate, the substrate having a first lattice constant. A source region and a drain region are formed on opposite sides of the gate electrode. A channel region is disposed beneath the gate stack and between the source region and the drain region. The source region is disposed in a first recess having a first depth and the drain region disposed in a second recess having a second depth. The first recess is deeper than the second recess. A semiconductor material having a second lattice constant different than the first lattice constant is disposed in the first recess and the second recess.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: April 23, 2024
    Assignee: Intel Corporation
    Inventors: Hsu-Yu Chang, Neville L. Dias, Walid M. Hafez, Chia-Hong Jan, Roman W. Olac-Vaw, Chen-Guan Lee
  • Publication number: 20240127988
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 48% to 55%. The conductive filler has a metal-ceramic compound.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Inventors: HSIU-CHE YEN, YUNG-HSIEN CHANG, CHENG-YU TUNG, Chia-Yuan Lee, CHEN-NAN LIU, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240127989
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 33% to 42%.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-YUAN LEE, CHENG-YU TUNG, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, YAO-TE CHANG, FU-HUA CHU
  • Publication number: 20240116751
    Abstract: A chip package includes an application chip, a micro-electromechanical systems (MEMS) chip, a conductive element, a bonding wire, and a molding compound. The application chip has a conductive pad. The MEMS chip is located on the application chip, and includes a main body and a cap. The main body is located between the cap and the application chip. The main body has a conductive pad. The conductive element is located on the conductive pad of the main body of the MEMS chip. The bonding wire extends from the conductive element to the conductive pad of the application chip. The molding compound is located on the application chip and surrounds the MEMS chip. The conductive element and the bonding wire are located in the molding compound.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 11, 2024
    Inventors: Chia-Ming CHENG, Shu-Ming CHANG, Tsang Yu LIU
  • Publication number: 20240116707
    Abstract: A powered industrial truck includes a lateral movement assembly including four sliding members and four pivotal members both on a wheeled carriage, four links having a first end pivotably secured to the sliding member and a second end pivotably secured to either end of the pivotal member, a motor shaft having two ends pivotably secured to the pivotal members respectively, a first electric motor on one frame member, and four mounts attached to the sliding members respectively; two lift assemblies including a second electric motor, a shaft having two ends rotatably secured to the sliding members respectively, two gear trains at the ends of the shaft respectively, a first gear connected to the second electric motor, a second gear on the shaft, and a first roller chain on the first and second gears; two electric attachments on the platform and being laterally moveable, each attachment. The mount has rollers.
    Type: Application
    Filed: September 21, 2023
    Publication date: April 11, 2024
    Inventors: Jung-Chieh Chang, Yi-Sheng Chen, Jen-Yung Hsiao, Chia-Fu Hsiao, Wei-Qi Lao, Chen-Chih Chan, Chung-Yu Liu
  • Publication number: 20240120325
    Abstract: A stacked package structure and a manufacturing method thereof are provided. The stacked package structure includes an upper redistribution layer, a first chip, and an upper molding layer. The first chip is disposed on the upper redistribution layer and is electrically connected to the upper redistribution layer. The upper molding layer is disposed on the first chip and the upper redistribution layer, and is configured to package the first chip. The upper molding layer includes a recess, the recess is recessed relative to a surface of the upper molding layer away from the upper redistribution layer, and the recess is circumferentially formed around a periphery of the upper molding layer.
    Type: Application
    Filed: May 31, 2023
    Publication date: April 11, 2024
    Applicant: POWERTECH TECHNOLOGY INC.
    Inventors: Pei-chun TSAI, Hung-hsin HSU, Shang-yu CHANG CHIEN, Chia-ling LEE
  • Patent number: 11955535
    Abstract: Semiconductor devices and methods of forming the same are provided. A semiconductor device according to one embodiment includes an active region including a channel region and a source/drain region adjacent the channel region, a gate structure over the channel region of the active region, a source/drain contact over the source/drain region, a dielectric feature over the gate structure and including a lower portion adjacent the gate structure and an upper portion away from the gate structure, and an air gap disposed between the gate structure and the source/drain contact. A first width of the upper portion of the dielectric feature along a first direction is greater than a second width of the lower portion of the dielectric feature along the first direction. The air gap is disposed below the upper portion of the dielectric feature.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 9, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Chang, Lin-Yu Huang, Sheng-Tsung Wang, Cheng-Chi Chuang, Yu-Ming Lin, Chih-Hao Wang
  • Patent number: 11948879
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a device, a first dielectric material disposed over the device, and an opening is formed in the first dielectric material. The semiconductor device structure further includes a conductive structure disposed in the opening, and the conductive structure includes a first sidewall. The semiconductor device structure further includes a surrounding structure disposed in the opening, and the surrounding structure surrounds the first sidewall of the conductive structure. The surrounding structure includes a first spacer layer and a second spacer layer adjacent the first spacer layer. The first spacer layer is separated from the second spacer layer by an air gap.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lin-Yu Huang, Li-Zhen Yu, Chia-Hao Chang, Cheng-Chi Chuang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: D1022213
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: QUANTA COMPUTER INC.
    Inventors: Barry Lam, Chia-Yuan Chang, Jung-Wen Chang, Kao-Yu Hsu