Patents by Inventor Chieh-Feng CHANG

Chieh-Feng CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150223738
    Abstract: Methods and systems for nanopillar sensors are described. Nanopillars can be defined on a substrate, and metal deposited on the nanopillars. A thermal treatment can reflow the metal on the nanopillars forming metallic bulbs on the top end of the nanopillars. These structures can have enhanced optical detection when functionalized with biological agents, or can detect gases, particles and liquids through interaction with the metal layer on the nanopillars.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 13, 2015
    Inventors: Sameer WALAVALKAR, Chieh-feng CHANG, Axel SCHERER
  • Publication number: 20150223739
    Abstract: Methods and systems for nanopillar sensors are described. Nanopillars can be defined on a substrate, and metal deposited on the nanopillars. A thermal treatment can reflow the metal on the nanopillars forming metallic bulbs on the top end of the nanopillars. These structures can have enhanced optical detection when functionalized with biological agents, or can detect gases, particles and liquids through interaction with the metal layer on the nanopillars.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 13, 2015
    Inventors: Sameer WALAVALKAR, Chieh-feng CHANG, Axel SCHERER, Brandon MARIN, Scott E. FRASER
  • Publication number: 20150222073
    Abstract: A microlaser system includes an optical source, a microlaser, an actuator switch, and a photovoltaic power source. The microlaser, which includes a control element, is optically pumped by at least a portion of light emitted by the optical source. The actuator switch is configured to be activated by a triggering event. Furthermore, the photovoltaic power source is coupled in a series connection with the actuator switch and the control element, the series connection configured to connect the photovoltaic power source to the control element of the microlaser when the actuator switch is activated by the triggering event.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 6, 2015
    Inventors: Seheon KIM, Axel SCHERER, Aditya RAJAGOPAL, Chieh-Feng CHANG
  • Patent number: 9070733
    Abstract: Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: June 30, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya Rajagopal, Chieh-feng Chang, Oliver Plettenburg, Stefan Petry, Axel Scherer, Charles L. Tschirhart
  • Publication number: 20150160120
    Abstract: The present application discloses optical microscopy systems and related method that use modulation techniques and contrast agents to enable the systems to detect nonlinear photoacoustic signals with high spectrum sensitivity and frequency selectivity for imaging. A laser beam is amplitude modulated for pure sinusoidal modulation using either the loss modulation technique or the single light amplitude modulation technique. The sample used in the invention is an endogenous contrast agent by itself or is treated by at least one exogenous contrast agent to produce or enhance photoacoustic effect induced by multi-photon absorption. The modulated laser beam is focused via a focusing device onto a sample which absorbs multiple photons simultaneously and generates ultrasonic (acoustic) waves via nonlinear photoacoutic effect. The ultrasonic waves are received and transformed into electrical signals and the frequency signals within the electrical signals are detected and recorded to create images.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 11, 2015
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chi-Kuang SUN, Yu-Hung LAI, Chieh-Feng CHANG, Szu-Yu LEE
  • Patent number: 9031102
    Abstract: A microlaser system includes an optical source, a microlaser, an actuator switch, and a photovoltaic power source. The microlaser, which includes a control element, is optically pumped by at least a portion of light emitted by the optical source. The actuator switch is configured to be activated by a triggering event. Furthermore, the photovoltaic power source is coupled in a series connection with the actuator switch and the control element, the series connection configured to connect the photovoltaic power source to the control element of the microlaser when the actuator switch is activated by the triggering event.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 12, 2015
    Assignee: California Institute of Technology
    Inventors: Seheon Kim, Axel Scherer, Aditya Rajagopal, Chieh-Feng Chang
  • Patent number: 8883645
    Abstract: Methods for fabrication of nanopillar field effect transistors are described. These transistors can have high height-to-width aspect ratios and be CMOS compatible. Silicon nitride may be used as a masking material. These transistors have a variety of applications, for example they can be used for molecular sensing if the nanopillar has a functionalized layer contacted to the gate electrode. The functional layer can bind molecules, causing an electrical signal in the transistor.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: November 11, 2014
    Assignee: California Institute of Technology
    Inventors: Chieh-Feng Chang, Aditya Rajagopal, Axel Scherer
  • Publication number: 20140134819
    Abstract: Methods for fabrication of nanopillar field effect transistors are described. These transistors can have high height-to-width aspect ratios and be CMOS compatible. Silicon nitride may be used as a masking material. These transistors have a variety of applications, for example they can be used for molecular sensing if the nanopillar has a functionalized layer contacted to the gate electrode. The functional layer can bind molecules, causing an electrical signal in the transistor.
    Type: Application
    Filed: July 12, 2013
    Publication date: May 15, 2014
    Inventors: Chieh-Feng CHANG, Aditya RAJAGOPAL, Axel SCHERER
  • Publication number: 20140103735
    Abstract: Novel methods and systems for wireless sensors are described. The systems can comprise an energy-harvesting unit, a transducer, and electronic control circuit, and an antenna. All elements can be integrated monolithically in a single system.
    Type: Application
    Filed: September 6, 2013
    Publication date: April 17, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Chieh-feng CHANG, Aditya RAJAGOPAL, Axel SCHERER
  • Publication number: 20140030819
    Abstract: Systems and methods for molecular sensing are described. Molecular sensors are described which are based on field-effect or bipolar junction transistors. These transistors have a nanopillar with a functionalized layer contacted to either the base or the gate electrode. The functional layer can bind molecules, which causes an electrical signal in the sensor.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 30, 2014
    Applicants: SANOFI, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Aditya RAJAGOPAL, Chieh-feng CHANG, Oliver PLETTENBURG, Stefan PETRY, Axel SCHERER, Charles L. TSCHIRHART
  • Publication number: 20130230063
    Abstract: A microlaser system includes an optical source, a microlaser, an actuator switch, and a photovoltaic power source. The microlaser, which includes a control element, is optically pumped by at least a portion of light emitted by the optical source. The actuator switch is configured to be activated by a triggering event. Furthermore, the photovoltaic power source is coupled in a series connection with the actuator switch and the control element, the series connection configured to connect the photovoltaic power source to the control element of the microlaser when the actuator switch is activated by the triggering event.
    Type: Application
    Filed: February 11, 2013
    Publication date: September 5, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Seheon KIM, Axel SCHERER, Aditya RAJAGOPAL, Chieh-Feng CHANG