Patents by Inventor Chien Cheng Chen

Chien Cheng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220026797
    Abstract: A pellicle includes a frame configured to attach to a photomask, wherein the frame includes a vent hole. The pellicle further includes a filter covering the vent hole, wherein the filter directly connects to an outer surface of the frame. The pellicle further includes a membrane extending over a top surface of the frame. The pellicle further includes a mount between the frame and the membrane, wherein the mount is attachable to the frame by an adhesive.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Inventors: Chue San YOO, Chih-Chiang TU, Chien-Cheng CHEN, Jong-Yuh CHANG, Kun-Lung HSIEH, Pei-Cheng HSU, Hsin-Chang LEE, Yun-Yue LIN
  • Publication number: 20210405534
    Abstract: An electron beam lithography system and an electron beam lithography process are disclosed herein for improving throughput. An exemplary method for increasing throughput achieved by an electron beam lithography system includes receiving an integrated circuit (IC) design layout that includes a target pattern, wherein the electron beam lithography system implements a first exposure dose to form the target pattern on a workpiece based on the IC design layout. The method further includes inserting a dummy pattern into the IC design layout to increase a pattern density of the IC design layout to greater than or equal to a threshold pattern density, thereby generating a modified IC design layout. The electron beam lithography system implements a second exposure dose that is less than the first exposure dose to form the target pattern on the workpiece based on the modified IC design layout.
    Type: Application
    Filed: July 2, 2021
    Publication date: December 30, 2021
    Inventors: Shih-Ming Chang, Wen Lo, Chun-Hung Liu, Chia-Hua Chang, Hsin-Wei Wu, Ta-Wei Ou, Chien-Chih Chen, Chien-Cheng Chen
  • Patent number: 11143952
    Abstract: A method of removing a pellicle from a photomask includes removing a portion of a membrane from a pellicle frame, wherein the pellicle frame remains attached to the photomask following the removing of the portion of the membrane. The method further includes removing the pellicle frame from the photomask. The method further includes cleaning the photomask.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chue San Yoo, Chih-Chiang Tu, Chien-Cheng Chen, Jong-Yuh Chang, Kun-Lung Hsieh, Pei-Cheng Hsu, Hsin-Chang Lee, Yun-Yue Lin
  • Publication number: 20210294203
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Patent number: 11054748
    Abstract: An electron beam lithography system and an electron beam lithography process are disclosed herein for improving throughput. An exemplary method for increasing throughput achieved by an electron beam lithography system includes receiving an integrated circuit (IC) design layout that includes a target pattern, wherein the electron beam lithography system implements a first exposure dose to form the target pattern on a workpiece based on the IC design layout. The method further includes inserting a dummy pattern into the IC design layout to increase a pattern density of the IC design layout to greater than or equal to a threshold pattern density, thereby generating a modified IC design layout. The electron beam lithography system implements a second exposure dose that is less than the first exposure dose to form the target pattern on the workpiece based on the modified IC design layout.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: July 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Wen Lo, Chun-Hung Liu, Chia-Hua Chang, Hsin-Wei Wu, Ta-Wei Ou, Chien-Chih Chen, Chien-Cheng Chen
  • Patent number: 11029593
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Publication number: 20210055646
    Abstract: In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Inventors: Chien-Cheng CHEN, Chia-Jen CHEN, Hsin-Chang LEE, Shih-Ming CHANG, Tran-Hui SHEN, Yen-Cheng HO, Chen-Shao HSU
  • Patent number: 10893608
    Abstract: The present invention provides a fabric having a multiple layered circuit thereon integrating with electronic devices. The fabric comprises: a base layer; a plurality of conductive circuit layers; at least one connecting layer having electrically-conductive via-hole(s) and electrically-insulated area covering the area without the via-hole(s) and electrically connecting two conductive circuit layers through the via-hole(s) but electrically insulating the rest of the two conductive circuit layers; one or more than one electrical devices mounted to the conductive circuit layer and connected to circuits on the conductive circuit layer through anisotropic conductive film (ACF); and a water-proof layer disposed on the conductive circuit layer which is the farthest away from the base layer and covering the electrical device(s).
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: January 12, 2021
    Assignee: National Taipei University of Technology
    Inventors: Tzu-Wei Chou, Syang-Peng Rwei, Chien-Cheng Chen, Guo-Ming Sung
  • Patent number: 10866504
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Patent number: 10816892
    Abstract: In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chien-Cheng Chen, Chia-Jen Chen, Hsin-Chang Lee, Shih-Ming Chang, Tran-Hui Shen, Yen-CHeng Ho, Chen-Shao Hsu
  • Patent number: 10772509
    Abstract: A method for determining emptying of upper gastrointestinal tract includes the steps of: providing an upper gastrointestinal monitoring system including a detecting device, a transmission module, a signal processing device and a signal display; acquiring a time signal of RGB three primary colors of an upper gastrointestinal tract image with the detecting device; transmitting the time signal of RGB three primary colors by the transmission module to the signal processing device; calculating an intensity ratio of the time signal of RGB three primary color; evaluating the upper gastrointestinal emptying according to the intensity ratio of the time signal of RGB three primary color; and displaying the evaluation result on the signal display.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 15, 2020
    Assignee: MEDIVISIONTECH CO., LTD.
    Inventors: Chien-Cheng Chen, Chiao-Hsiung Chuang
  • Patent number: 10772508
    Abstract: A method for determining upper gastrointestinal bleeding course includes the steps of: providing an upper gastrointestinal bleeding monitoring system including a bleeding detecting device, a transmission module, a signal processing device and a signal display; acquiring a time signal of RGB three primary colors of an upper gastrointestinal tract image with the bleeding detecting device; transmitting the time signal of RGB three primary colors by the transmission module to the signal processing device; calculating an intensity ratio of the time signal of RGB three primary color; evaluating the upper gastrointestinal bleeding course according to the intensity ratio of the time signal of RGB three primary color; and displaying the evaluation result on the signal display.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: September 15, 2020
    Assignee: MEDIVISIONTECH CO., LTD.
    Inventors: Chien-Cheng Chen, Chiao-Hsiung Chuang
  • Publication number: 20200268540
    Abstract: A knee-supporting assembly has a supporting device and two belt frames. The supporting device has a securing board assembly, two wheels, a driving axle, an operating member, a transmission assembly, and a pushing member. The wheels are mounted rotatably on the securing board assembly. The driving axle is connected eccentrically with the two wheels. The operating member is connected securely to the driving axle. The transmission assembly is connected with and driven by the driving axle to be reciprocatively moveable relative to the securing board assembly and has a first end connected with the driving axle and a second end. The pushing member is connected with the second end of the transmission assembly. The belt frames are connected respectively with two ends of the securing board assembly.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 27, 2020
    Inventor: Chien-Cheng CHEN
  • Publication number: 20200098545
    Abstract: An electron beam lithography system and an electron beam lithography process are disclosed herein for improving throughput. An exemplary method for increasing throughput achieved by an electron beam lithography system includes receiving an integrated circuit (IC) design layout that includes a target pattern, wherein the electron beam lithography system implements a first exposure dose to form the target pattern on a workpiece based on the IC design layout. The method further includes inserting a dummy pattern into the IC design layout to increase a pattern density of the IC design layout to greater than or equal to a threshold pattern density, thereby generating a modified IC design layout. The electron beam lithography system implements a second exposure dose that is less than the first exposure dose to form the target pattern on the workpiece based on the modified IC design layout.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Shih-Ming Chang, Wen Lo, Chun-Hung Liu, Chia-Hua Chang, Hsin-Wei Wu, Ta-Wei Ou, Chien-Chih Chen, Chien-Cheng Chen
  • Publication number: 20200050098
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Publication number: 20190196322
    Abstract: A lithography mask includes a substrate, a reflective structure disposed over a first side of the substrate, and a patterned absorber layer disposed over the reflective structure. The lithography mask includes a first region and a second region that surrounds the first region in a top view. The patterned absorber layer is located in the first region. A substantially non-reflective material is located in the second region. The lithography mask is formed by forming a reflective structure over a substrate, forming an absorber layer over the reflective structure, defining a first region of the lithography mask, and defining a second region of the lithography mask. The defining of the first region includes patterning the absorber layer. The second region is defined to surround the first region in a top view. The defining of the second region includes forming a substantially non-reflective material in the second region.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Chin-Hsiang Lin, Chien-Cheng Chen, Hsin-Chang Lee, Chia-Jen Chen, Pei-Cheng Hsu, Yih-Chen Su, Gaston Lee, Tran-Hui Shen
  • Publication number: 20190150759
    Abstract: A method for determining upper gastrointestinal bleeding course includes the steps of: providing an upper gastrointestinal bleeding monitoring system including a bleeding detecting device, a transmission module, a signal processing device and a signal display; acquiring a time signal of RGB three primary colors of an upper gastrointestinal tract image with the bleeding detecting device; transmitting the time signal of RGB three primary colors by the transmission module to the signal processing device; calculating an intensity ratio of the time signal of RGB three primary color; evaluating the upper gastrointestinal bleeding course according to the intensity ratio of the time signal of RGB three primary color; and displaying the evaluation result on the signal display.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 23, 2019
    Inventors: Chien-Cheng Chen, Chiao-Hsiung Chuang
  • Publication number: 20190150760
    Abstract: A method for determining emptying of upper gastrointestinal tract includes the steps of: providing an upper gastrointestinal monitoring system including a detecting device, a transmission module, a signal processing device and a signal display; acquiring a time signal of RGB three primary colors of an upper gastrointestinal tract image with the detecting device; transmitting the time signal of RGB three primary colors by the transmission module to the signal processing device; calculating an intensity ratio of the time signal of RGB three primary color; evaluating the upper gastrointestinal emptying according to the intensity ratio of the time signal of RGB three primary color; and displaying the evaluation result on the signal display.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 23, 2019
    Inventors: Chien-Cheng Chen, Chiao-Hsiung Chuang
  • Publication number: 20190148110
    Abstract: In a method of manufacturing a photo mask for lithography, circuit pattern data are acquired. A pattern density, which is a total pattern area per predetermined area, is calculated from the circuit pattern data. Dummy pattern data for areas having pattern density less than a threshold density are generated. Mask drawing data is generated from the circuit pattern data and the dummy pattern data. By using an electron beam from an electron beam lithography apparatus, patterns are drawn according to the mask drawing data on a resist layer formed on a mask blank substrate. The drawn resist layer is developed using a developing solution. Dummy patterns included in the dummy pattern data are not printed as a photo mask pattern when the resist layer is exposed with the electron beam and is developed.
    Type: Application
    Filed: April 30, 2018
    Publication date: May 16, 2019
    Inventors: Chien-Cheng CHEN, Chia-Jen CHEN, Hsin-Chang LEE, Shih-Ming CHANG, Tran-Hui SHEN, Yen-Cheng HO, Chen-Shao HSU
  • Patent number: D912661
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: March 9, 2021
    Assignee: Dell Products L.P.
    Inventors: Eid-Beng Goh, Chih Chieh Chang, An-Chung Hsieh, Chien-Cheng Chen, Kyu Sang Park