Patents by Inventor Chien Hsing Chang

Chien Hsing Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9757458
    Abstract: Extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor (BCR) with a sufficiently high amount of anti-IgM. Either treatment leads to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were needed to induce caspase-dependent apoptosis. Immobilization also induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (??m), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. Several of the in vitro effects of immobilized epratuzumab, including apoptosis, drop in ??m, and generation of ROS, were observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: September 12, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9751948
    Abstract: The present invention provides compositions and methods of use of anti-IGF-1R antibodies or antibody fragments. Preferably the antibodies bind to IGF-1R but not IR; are not agonists for IGF-1R; do not block binding of IGF-1 or IGF-2 to isolated IGF-1R, but effectively neutralize activation of IGF-1R by IGF-1 in intact cells; and block binding of an R1 antibody to IGF-1R. The antibodies may be murine, chimeric, humanized or human R1 antibodies comprising the heavy chain CDR sequences DYYMY (SEQ ID NO:1), YITNYGGSTYYPDTVKG (SEQ ID NO:2) and QSNYDYDGWFAY (SEQ ID NO:3) and the light chain CDR sequences KASQEVGTAVA (SEQ ID NO:4), WASTRHT (SEQ ID NO:5) and QQYSNYPLT (SEQ ID NO:6). Preferably the antibodies bind to an epitope of IGF-1R comprising the first half of the cysteine-rich domain of IGF-1R (residues 151-222). The anti-IGF-1R antibodies may be used for diagnosis or therapy of various diseases such as cancer.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: September 5, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, Michele J. Losman, David M. Goldenberg
  • Publication number: 20170246291
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection using a T20 expression vector, such as that shown in SEQ ID NO:1 or SEQ ID NO:3. The T20 expression vector may be used in a variety of therapeutic applications, such as ex vivo transfection of dendritic cells to induce a host immune response to HIV, localized transfection in vivo in a gene therapy approach to provide longer term delivery of T20, or in vitro production of T20 peptide. The T20 may be secreted into the circulation to act as a fusion inhibitor of HIV infection, or may induce an endogenous immune response to HIV or HIV-infected cells. Alternatively, a DDD peptide may be incorporated in a fusion protein comprising T20 or another antigenic protein or peptide to enhance the immune response to the protein or peptide.
    Type: Application
    Filed: May 16, 2017
    Publication date: August 31, 2017
    Inventors: Sofia Stenler, Britta Wahren, Chien-Hsing Chang, David M. Goldenberg
  • Publication number: 20170247417
    Abstract: The present invention concerns compositions and methods of use of T-cell redirecting complexes, with at least one binding site for a T-cell antigen and at least one binding site for an antigen on a diseased cell or pathogen. Preferably, the complex is a DNL™ complex. More preferably, the complex comprises a bispecific antibody (bsAb). Most preferably, the bsAb is an anti-CD3×anti-CD19 bispecific antibody, although antibodies against other T-cell antigens and/or disease-associated antigens may be used. The complex is capable of targeting effector T cells to induce T-cell-mediated cytotoxicity of cells associated with a disease, such as cancer, autoimmune disease or infectious disease. The cytotoxic immune response is enhanced by co-administration of interfon-based agents that comprise interferon-?, interferon-?, interferon-?1, interferon-?2 or interferon-?3.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 31, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Patent number: 9737617
    Abstract: Disclosed herein are compositions and methods of use comprising hexavalent DNL complexes. Preferably, the complexes comprise anti-CD20 and/or anti-CD22 antibodies or fragments thereof. More preferably, the anti-CD20 antibody is veltuzumab and the anti-CD22 antibody is epratuzumab. Administration of the subject hexavalent DNL complexes induces apoptosis and cell death of target cells in diseases such as B-cell lymphomas or leukemias, autoimmune disease or immune dysfunction disease. In most preferred embodiments, the DNL complexes increase levels of phosphorylated p38 and PTEN, decrease levels of phosphorylated Lyn, Akt, ERK, IKK?/? and I?B?, increase expression of RKIP and Bax and decrease expression of Mcl-1, Bcl-xL, Bcl-2, and phospho-BAD in target cells. The subject DNL complexes show EC50 values for inhibiting tumor cell growth in the low nanomolar or even sub-nanomolar concentration range.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: August 22, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20170226219
    Abstract: The present invention concerns compositions and methods of use of bispecific antibodies comprising at least one binding site for Trop-2 (EGP-1) and at least one binding site for CD3. The bispecific antibodies are of use for inducing an immune response against a Trop-2 expressing tumor, such as carcinoma of the esophagus, pancreas, lung, stomach, colon, rectum, urinary bladder, breast, ovary, uterus, kidney or prostate. The methods may comprising administering the bispecific antibody alone, or with one or more therapeutic agents such as antibody-drug conjugates, interferons (preferably interferon-?), and/or checkpoint inhibitor antibodies. The bispecific antibody is capable of targeting effector T cells, NK cells, monocytes or neutrophils to induce leukocyte-mediated cytotoxicity of Trop-2+ cancer cells. The cytotoxic immune response is enhanced by co-administration of interferon, checkpoint inhibitor antibody and/or ADC.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Publication number: 20170224837
    Abstract: The present invention relates to therapeutic ADCs comprising a drug attached to an anti-cancer antibody or antigen-binding antibody fragment. Preferably the drug is SN-38. More preferably the antibody or fragment thereof binds to Trop-2 and the therapy is used to treat a Trop-2 positive cancer. Most preferably the antibody is hRS7. The ADC is administered to a subject with a cancer in combination with an ABCG2 inhibitor. The combination therapy is effective to treat cancers that are resistant to drug alone and/or to ADC alone.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 10, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Publication number: 20170226205
    Abstract: Disclosed are methods and compositions of anti-B cell antibodies, preferably anti-CD22 antibodies, for diagnosis, prognosis and therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. In certain embodiments, trogocytosis induced by anti-B cell antibodies may determine antibody efficacy, disease responsiveness and prognosis of therapeutic intervention. In other embodiments, optimal dosages of therapeutic antibody may be selected by monitoring the degree of trogocytosis induced by anti-B cell antibodies.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 10, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Hans J. Hansen, Edmund A. Rossi
  • Publication number: 20170218059
    Abstract: The present invention concerns chimeric or humanized antibodies or antigen-binding fragments thereof that comprise specific CDR sequences, disclosed herein. Preferably, the antibodies or fragments comprise specific heavy and light chain variable region sequences disclosed herein. More preferably, the antibodies or fragments also comprise specific constant region sequences, such as those associated with the nG1m1,2 or Km3 allotypes. The antibodies or fragments may bind to a human histone protein, such as H2B, H3 or H4. The antibodies or fragments are of use to treat a variety of diseases that may be associated with histones, such as autoimmune disease (e.g.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventors: Chien-Hsing Chang, Hans J. Hansen, David M. Goldenberg
  • Patent number: 9707300
    Abstract: The present invention concerns methods and compositions for delivery of therapeutic agents to target cells, tissues or organisms. In preferred embodiments, the therapeutic agents are delivered in the form of therapeutic-loaded polymers that may comprise many copies of one or more therapeutic agents. In more preferred embodiments, the polymer may be conjugated to a peptide moiety that contains one or more haptens, such as HSG. The agent-polymer-peptide complex may be delivered to target cells by, for example, a pre-targeting technique utilizing bispecific or multispecific antibodies or fragments, having at least one binding arm that recognizes the hapten and at least a second binding arm that binds specifically to a disease or pathogen associated antigen, such as a tumor associated antigen. Methods for synthesizing and using such therapeutic-loaded polymers and their conjugates are provided.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: July 18, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Serengulam V. Govindan, Sung-Ju Moon, David M. Goldenberg, Chien-Hsing Chang
  • Patent number: 9701748
    Abstract: Disclosed are humanized RFB4 antibodies or antigen-binding fragments thereof. therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. Preferably, hRFB4 comprises the light and heavy chain RFB4 CDR sequences with human antibody FR and constant region sequences, along with heavy chain framework region (FR) amino acid residues Q1, F27, V48, A49, F68, R98, T117 and light chain residues L4, S22, K39, G100, V104, and K107. More preferably, the heavy and light chain variable region sequences of hRFB4 comprise SEQ ID NO:7 and SEQ ID NO:8, respectively. In certain embodiments, trogocytosis (antigen shaving) induced by hRFB4 plays a significant role in determining antibody efficacy and disease responsiveness for treatment of B-cell diseases, such as hematopoietic cancers, immune system dysfunction and/or autoimmune disease.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: July 11, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 9687547
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection using a T20 expression vector, such as that shown in SEQ ID NO:1 or SEQ ID NO:3. The T20 expression vector may be used in a variety of therapeutic applications, such as ex vivo transfection of dendritic cells to induce a host immune response to HIV, localized transfection in vivo in a gene therapy approach to provide longer term delivery of T20, or in vitro production of T20 peptide. The T20 may be secreted into the circulation to act as a fusion inhibitor of HIV infection, or may induce an endogenous immune response to HIV or HIV-infected cells. Alternatively, a DDD peptide may be incorporated in a fusion protein comprising T20 or another antigenic protein or peptide to enhance the immune response to the protein or peptide.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: June 27, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Sofia Stenler, Britta Wahren, Chien-Hsing Chang, David M. Goldenberg
  • Publication number: 20170173167
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject. The compositions may comprise a targeting molecule against an HIV antigen, such as an anti-HIV antibody or antibody fragment. The anti-HIV antibody or fragment may be conjugated to a variety of cytotoxic agents, such as doxorubicin. In a preferred embodiment, the antibody or fragment is P4/D10. Other embodiments may concern methods of imaging, detection or diagnosis of HIV infection in a subject using an anti-HIV antibody or fragment conjugated to a diagnostic agent. In alternative embodiments, a bispecific antibody with at least one binding site for an HIV antigen and at least one binding site for a carrier molecule may be administered, optionally followed by a clearing agent, followed by administration of a carrier molecule conjugated to a therapeutic agent.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Inventors: David M. Goldenberg, Chien-Hsing Chang, Edmund A. Rossi, William J. McBride
  • Patent number: 9682143
    Abstract: The present invention concerns combinations of two or more agents for inducing an immune response to cancer or infectious disease. Agents may include leukocyte redirecting complexes, antibody-drug conjugates, interferons (preferably interferon-?), and/or checkpoint inhibitor antibodies. The leukocyte redirecting complexes have at least one binding site for a leukocyte antigen and at least one binding site for an antigen on a diseased cell or pathogen. Preferably, the complex is a DNL™ complex. More preferably, the complex comprises a bispecific antibody (bsAb). Most preferably, the bsAb is an anti-CD3×anti-CD19 bispecific antibody, although antibodies against other leukocyte antigens and/or disease-associated antigens may be used. The complex is capable of targeting effector T cells, NK cells, monocytes or neutrophils to induce leukocyte-mediated cytotoxicity of cells associated with cancer or infectious disease.
    Type: Grant
    Filed: December 14, 2013
    Date of Patent: June 20, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Publication number: 20170166651
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 15, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 9670286
    Abstract: The present invention concerns compositions and methods of use of bispecific antibodies comprising at least one binding site for Trop-2 (EGP-1) and at least one binding site for CD3. The bispecific antibodies are of use for inducing an immune response against a Trop-2 expressing tumor, such as carcinoma of the esophagus, pancreas, lung, stomach, colon, rectum, urinary bladder, breast, ovary, uterus, kidney or prostate. The methods may comprising administering the bispecific antibody alone, or with one or more therapeutic agents such as antibody-drug conjugates, interferons (preferably interferon-?), and/or checkpoint inhibitor antibodies. The bispecific antibody is capable of targeting effector T cells, NK cells, monocytes or neutrophils to induce leukocyte-mediated cytotoxicity of Trop-2+ cancer cells. The cytotoxic immune response is enhanced by co-administration of interferon, checkpoint inhibitor antibody and/or ADC.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: June 6, 2017
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Patent number: 9663576
    Abstract: Disclosed are methods and compositions of anti-B cell antibodies, preferably anti-CD22 antibodies, for diagnosis, prognosis and therapy of B-cell associated diseases, such as B-cell malignancies, autoimmune disease and immune dysfunction disease. In certain embodiments, trogocytosis induced by anti-B cell antibodies may determine antibody efficacy, disease responsiveness and prognosis of therapeutic intervention. In other embodiments, optimal dosages of therapeutic antibody may be selected by monitoring the degree of trogocytosis induced by anti-B cell antibodies.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: May 30, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Hans J. Hansen, Edmund A. Rossi
  • Patent number: 9657093
    Abstract: The present invention concerns chimeric or humanized antibodies or antigen-binding fragments thereof that comprise specific CDR sequences, disclosed herein. Preferably, the antibodies or fragments comprise specific heavy and light chain variable region sequences disclosed herein. More preferably, the antibodies or fragments also comprise specific constant region sequences, such as those associated with the nG1m1,2 or Km3 allotypes. The antibodies or fragments may bind to a human histone protein, such as H2B, H3 or H4. The antibodies or fragments are of use to treat a variety of diseases that may be associated with histones, such as autoimmune disease (e.g.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: May 23, 2017
    Assignee: Immunomedics, Inc.
    Inventors: Chien-Hsing Chang, Hans J. Hansen, David M. Goldenberg
  • Publication number: 20170137534
    Abstract: Described herein are compositions and methods of use of anti-pancreatic cancer antibodies or fragments thereof, such as murine, chimeric, humanized or human PAM4 antibodies. The subject antibodies show a number of novel and useful therapeutic characteristics, such as binding with high specificity to pancreatic and other cancers, but not to normal or benign pancreatic tissues and binding to a high percentage of early stage pancreatic cancers. In preferred embodiments, the antibodies bind to pancreatic cancer mucins. The antibodies and fragments are of use for the detection, diagnosis and/or treatment of cancer, such as pancreatic cancer. The antibodies, such as PAM4 antibodies, bind to a PAM4 antigen that shows unique cell and tissue distributions compared with other known antibodies such as CA19.9, DUPAN2, SPAN1, Nd2, B72.3, and Lea and Le(y) antibodies that bind to the Lewis antigens.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventors: David M. Goldenberg, Hans J. Hansen, Chien-Hsing Chang, David V. Gold
  • Publication number: 20170121692
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Application
    Filed: December 2, 2016
    Publication date: May 4, 2017
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi