Patents by Inventor Chien-Hsing Chen

Chien-Hsing Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148280
    Abstract: An implantable micro-biosensor a substrate, a first electrode, a second electrode, a third electrode, and a chemical reagent layer. The first electrode is disposed on the substrate and used as a counter electrode. The second electrode is disposed on the substrate and spaced apart from the first electrode. The third electrode is disposed on the substrate and used as a working electrode. The chemical reagent layer at least covers a sensing section of the third electrode so as to permit the third electrode to selectively cooperate with the first electrode or the first and second electrodes to measure a physiological signal in response to the physiological parameter of the analyte.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: Chun-Mu Huang, Chieh-Hsing Chen, Heng-Chia Chang, Chi-Hao Chen, Chien-Chung Chen
  • Publication number: 20240154065
    Abstract: An optoelectronic device includes a first semiconductor layer, a second semiconductor layer and an active layer between the first semiconductor layer and the second semiconductor layer; a first insulating layer on the second semiconductor layer and including a plurality of first openings exposing the first semiconductor layer, wherein the first openings include a first group and a second group; a third electrode on the first insulating layer and including a first extended portion and a second extended portion, wherein the first extended portion and the second extended portion are respectively electrically connected to the first semiconductor layer through the first group of the first openings and the second group of the first openings, and wherein the number of the first group of the first openings is different from the number of the second group of the first openings; and a plurality of fourth electrodes on the second insulating layer and electrically connected to the second semiconductor layer, wherein in a
    Type: Application
    Filed: January 11, 2024
    Publication date: May 9, 2024
    Inventors: Chao-Hsing CHEN, Jia-Kuen WANG, Chien-Chih LIAO, Tzu-Yao TSENG, Tsun-Kai KO, Chien-Fu SHEN
  • Patent number: 11974842
    Abstract: An implantable micro-biosensor a substrate, a first electrode, a second electrode, a third electrode, and a chemical reagent layer. The first electrode is disposed on the substrate and used as a counter electrode. The second electrode is disposed on the substrate and spaced apart from the first electrode. The third electrode is disposed on the substrate and used as a working electrode. The chemical reagent layer at least covers a sensing section of the third electrode so as to permit the third electrode to selectively cooperate with the first electrode or the first and second electrodes to measure a physiological signal in response to the physiological parameter of the analyte.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: May 7, 2024
    Assignee: Bionime Corporation
    Inventors: Chun-Mu Huang, Chieh-Hsing Chen, Heng-Chia Chang, Chi-Hao Chen, Chien-Chung Chen
  • Patent number: 11973164
    Abstract: A light-emitting device includes a substrate including a top surface; a semiconductor stack including a first semiconductor layer, an active layer and a second semiconductor layer formed on the substrate, wherein a portion of the top surface is exposed; a distributed Bragg reflector (DBR) formed on the semiconductor stack and contacting the portion of the top surface of the substrate; a metal layer formed on the distributed Bragg reflector (DBR), contacting the portion of the top surface of the substrate and being insulated with the semiconductor stack; and an insulation layer formed on the metal layer and contacting the portion of the top surface of the substrate.
    Type: Grant
    Filed: January 3, 2023
    Date of Patent: April 30, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Che-Hung Lin, Chien-Chih Liao, Chi-Shiang Hsu, De-Shan Kuo, Chao-Hsing Chen
  • Patent number: 11945156
    Abstract: A three-dimensional printing apparatus includes a liquid tank capable of accommodating a photosensitive liquid. The liquid tank includes a film, a plurality of side walls, a plate and a motor. The film has a workpiece curing area. The plurality of side walls surrounds the film. The plate is capable of supporting the film and having at least one fluid tunnel extending from a first surface of the plate contacting the film to a second surface of the plate. The motor is connected to the liquid tank to incline the liquid tank. A gap is formed between the plat and one of the plurality of side walls of the liquid tank, and the film is communicated with an outside space via the gap.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: April 2, 2024
    Assignee: YOUNG OPTICS INC.
    Inventors: Li-Han Wu, Chien-Hsing Tsai, Chao-Shun Chen, Tsung-Yu Liu
  • Patent number: 11942509
    Abstract: A light-emitting device comprises a substrate; a first light-emitting unit and a second light-emitting unit formed on the substrate, each of the first light-emitting unit and the second light-emitting unit comprises a first semiconductor layer, a second semiconductor layer, and an active layer between the first semiconductor layer and the second semiconductor layer, wherein the first light-emitting unit comprises a first semiconductor mesa and a first surrounding part surrounding the first semiconductor mesa, and the second light-emitting unit comprises a second semiconductor mesa and a second surrounding part surrounding the second semiconductor mesa; a trench formed between the first light-emitting unit and the second light-emitting unit and exposing the substrate; a first insulating layer comprising a first opening on the first surrounding part and a second opening on the second semiconductor layer of the second light-emitting unit; and a connecting electrode comprising a first connecting part on the first
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: March 26, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chao-Hsing Chen, I-Lun Ma, Bo-Jiun Hu, Yu-Ling Lin, Chien-Chih Liao
  • Publication number: 20200165210
    Abstract: A method for preparing azoxystrobin comprises the following steps: (a) mixing methyl (E)-2-[2-(6-chloropyrimidin-4-yloxy)phenyl]-3-methoxyacrylate, 2-cyanophenol, potassium carbonate, and 10-80 mol % of 1-methylpyrrolidine as a catalyst in an aprotic solvent to form a basic mixture, and reacting the basic mixture for 2-5 hrs at a temperature of 60-120° C.; and (b) subjecting the basic mixture after reaction in Step (a) to a first distillation under a reduced pressure of 80-120 torr at 70-80° C., to obtain azoxystrobin.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 28, 2020
    Inventors: Chien-Hsing CHEN, Ming-Fang HSIEH, Chih-Da LIN, Chien-Yu LIU
  • Patent number: 10324034
    Abstract: A self-referencing localized plasmon resonance sensing device and a system thereof are disclosed. The reference optical waveguide element is modified with a noble metal nanoparticle layer. The sensing optical waveguide element is modified with a noble metal nanoparticle layer, which is further modified with a recognition unit. The incident light is guided into the reference and the sensing optical waveguide elements to respectively generate localized plasmon resonance sensor signals. The reference and the sensing optical waveguide elements respectively have a calibration slope. The processor utilizes the calibration slopes to regulate the second difference generated by detecting with the sensing optical waveguide element. The processor utilizes a difference between the first difference, which is generated by detecting with the reference optical waveguide element, and the regulated second difference to obtain a sensor response.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: June 18, 2019
    Assignee: National Chung Cheng University
    Inventors: Lai-Kwan Chau, Chin-Wei Wu, Chang-Yue Chiang, Chien-Hsing Chen
  • Patent number: 9612197
    Abstract: A reflection-based tubular waveguide particle plasmon resonance sensing system and a sensing device thereof are provided. The sensing device includes a hollow tubular waveguide element having wall, a reflection layer disposed on one end of the wall (distal end), and a noble metal nanoparticle layer distributed on the surface of the wall. An incident light enters the wall through another end of the tubular waveguide element (proximal end) and being total internal reflected many times along the wall, then is reflected by the reflection layer and being total internal reflected many times along the wall again, and finally, the incident light exits the proximal end. Wherein, when the sample contacts the noble metal nanoparticle layer of the tubular waveguide element, the particle plasmon resonance condition is altered and hence the signal intensity of the light exiting the tubular waveguide element changes.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: April 4, 2017
    Assignee: National Chung Cheng University
    Inventors: Lai-Kwan Chau, Yu-Chung Huang, Chih-To Wang, Chien-Hsing Chen, Chang-Yue Chiang
  • Publication number: 20160216205
    Abstract: A reflection-based tubular waveguide particle plasmon resonance sensing system and a sensing device thereof are provided. The sensing device includes a hollow tubular waveguide element having wall, a reflection layer disposed on one end of the wall (distal end), and a noble metal nanoparticle layer distributed on the surface of the wall. An incident light enters the wall through another end of the tubular waveguide element (proximal end) and being total internal reflected many times along the wall, then is reflected by the reflection layer and being total internal reflected many times along the wall again, and finally, the incident light exits the proximal end. Wherein, when the sample contacts the noble metal nanoparticle layer of the tubular waveguide element, the particle plasmon resonance condition is altered and hence the signal intensity of the light exiting the tubular waveguide element changes.
    Type: Application
    Filed: July 22, 2015
    Publication date: July 28, 2016
    Inventors: Lai-Kwan Chau, Yu-Chung Huang, Chih-To Wang, Chien-Hsing Chen, Chang-Yue Chiang
  • Publication number: 20160169797
    Abstract: A self-referencing localized plasmon resonance sensing device and a system thereof are disclosed. The reference optical waveguide element is modified with a noble metal nanoparticle layer. The sensing optical waveguide element is modified with a noble metal nanoparticle layer, which is further modified with a recognition unit. The incident light is guided into the reference and the sensing optical waveguide elements to respectively generate localized plasmon resonance sensor signals. The reference and the sensing optical waveguide elements respectively have a calibration slope. The processor utilizes the calibration slopes to regulate the second difference generated by detecting with the sensing optical waveguide element. The processor utilizes a difference between the first difference, which is generated by detecting with the reference optical waveguide element, and the regulated second difference to obtain a sensor response.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Lai-Kwan CHAU, Chin-Wei WU, Chang-Yue CHIANG, Chien-Hsing CHEN
  • Patent number: 8355134
    Abstract: The present invention discloses a localized plasmon resonance sensing device and a fiber optic structure. The device comprises an optical fiber and a noble metal nanoparticle layer. The optical fiber has a plurality of notches, and such notches are located on the side surface of the optical fiber. The noble metal nanoparticle layer is located at the notch. As a result, when a light is launched into the optical fiber, a detecting unit can be used to detect a localized plasmon resonance signal which is generated by the interaction between the noble metal nanoparticle layer and the light.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 15, 2013
    Assignee: National Chung Cheng University
    Inventors: La-Kwan Chau, Wei-Te Wu, Tzu-Chien Tsao, Chien-Hsing Chen, Wan-Yun Li
  • Publication number: 20110069316
    Abstract: The present invention discloses a localized plasmon resonance sensing device and a fiber optic structure. The device comprises an optical fiber and a noble metal nanoparticle layer. The optical fiber has a plurality of notches, and such notches are located on the side surface of the optical fiber. The noble metal nanoparticle layer is located at the notch. As a result, when a light is launched into the optical fiber, a detecting unit can be used to detect a localized plasmon resonance signal which is generated by the interaction between the noble metal nanoparticle layer and the light.
    Type: Application
    Filed: March 29, 2010
    Publication date: March 24, 2011
    Applicant: NATIONAL CHUNG CHENG UNIVERSITY
    Inventors: Lai-Kwan Chau, Wei-Te Wu, Tzu-Chien Tsao, Chien-Hsing Chen, Wan-Yun Li
  • Publication number: 20090127113
    Abstract: A micro-fluidic detector applied for detecting analytes in a fluid sample is disclosed. The micro-fluidic detector comprises a mixing area, a flow area and at least one detection module. The mixing area has a conductive top plate and a plurality of first electrodes for mixing a first fluid and a second fluid so as to form the fluid sample. The flow area has two second electrodes, positioned side by side, for driving the fluid sample to flow. The detection module is used for detecting analytes in the fluid sample flowing in the flow area. The mixing area uniformly mixes the first fluid and the second fluid via an electric field generated by applying a voltage potential, with respect to the conductive top plate, to one by one of the first electrodes in the mixing area. The flow area drives the fluid sample via an electric field generated by the second electrodes.
    Type: Application
    Filed: November 15, 2007
    Publication date: May 21, 2009
    Inventors: Chien-Hsing Chen, Jhih-Lin Chen, Wen-Hsin Hsien
  • Publication number: 20050066875
    Abstract: A panel includes a signaling device and a displayer, which are detachably connected to each other. And the signaling device has an infrared emitter to emit a signal to an infrared receiver of the displayer and the displayer shows the signal thereon.
    Type: Application
    Filed: July 16, 2004
    Publication date: March 31, 2005
    Applicant: Everwell Electronics Co., LTD
    Inventor: Chien-Hsing Chen
  • Patent number: 6570014
    Abstract: A process for preparing triazolopyrimidine derivatives of the formula (I): wherein R1 represents a hydrogen or an alkyl radical of one to ten carbon atoms, or a cycloalkyl radical of three to six carbon atoms, or an alkenyl radical of up to four carbon atoms; R2 represents a hydrogen, a halogen atom, a hydroxyalkyl or alkyl radical of one to ten carbon atoms; R3 represents a hydrogen, a hydroxyalkyl or alkyl radical of one to four carbon atoms; by rapidly preparing diamino-1,2,4-triazole which is reacted with an aldehyde to form an imide which is reacted with an &agr;,&bgr;-unsaturated acid derivative, the reaction product of which is hydrolyzed in the presence of an acid to produce the triazolopyrimidine derivatives of formula (I). The compounds of the formula (I) are capable of preventing bronchospasm.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: May 27, 2003
    Assignee: Sinon Corporation
    Inventors: Chien-Hsing Chen, Chun-Lin Yeh, Yu-Hwa Chuang
  • Publication number: 20030092739
    Abstract: The present invention relates to a novel heterocyclic compound having the formula: 1
    Type: Application
    Filed: June 22, 2001
    Publication date: May 15, 2003
    Inventors: Chun-Lin Yeh, Chien-Hsing Chen
  • Patent number: 6465492
    Abstract: A heterocyclic compound has the following formula (I) wherein Y represents a substituted or unsubstituted ethylene group or a trimethylene group, W represents the group —SO2R1, X represents an oxygen atom or sulfur atom or the group —NR2 or —CHR3, R represents a hydrogen atom or a methyl group and Z represents a pyridyl group.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: October 15, 2002
    Assignee: Sinon Corporation
    Inventors: Chun-Lin Yeh, Chien-Hsing Chen
  • Patent number: 6307053
    Abstract: A process for preparing imidacloprid involves reacting 2-nitroiminoimidazolidine with 2-chloro-5-chloromethyl pyridine in the presence of an alkali carbonate in an organic solvent. A stoichiometric amount of the 2-chloro-5-chloromethyl pyridine is gradually added into mixture of a corresponding stoichiometric amount of the 2-nitroiminoimidazolidine and the organic solvent under reflux condition.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: October 23, 2001
    Assignee: Sinon Corporation
    Inventors: Chun-Lin Yeh, Chien-Hsing Chen