Patents by Inventor Chih-Chiang Chang

Chih-Chiang Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240145403
    Abstract: An electronic package is provided, in which electronic elements and at least one packaging module including a semiconductor chip and a shielding structure covering the semiconductor chip are disposed on a carrier structure, an encapsulation layer encapsulates the electronic elements and the packaging module, and a shielding layer is formed on the encapsulation layer and in contact with the shielding structure. Therefore, the packaging module includes the semiconductor chip and the shielding structure and has a chip function and a shielding wall function simultaneously.
    Type: Application
    Filed: February 6, 2023
    Publication date: May 2, 2024
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chih-Hsien CHIU, Wen-Jung TSAI, Chih-Chiang HE, Ko-Wei CHANG, Chia-Yang CHEN
  • Publication number: 20240120337
    Abstract: A semiconductor device structure includes a first dielectric wall, a plurality of first semiconductor layers vertically stacked and extending outwardly from a first side of the first dielectric wall, each first semiconductor layer has a first width, a plurality of second semiconductor layers vertically stacked and extending outwardly from a second side of the first dielectric wall, each second semiconductor layer has a second width, a plurality of third semiconductor layers disposed adjacent the second side of the first dielectric wall, each third semiconductor layer has a third width greater than the second width, a first gate electrode layer surrounding at least three surfaces of each of the first semiconductor layers, the first gate electrode layer having a first conductivity type, and a second gate electrode layer surrounding at least three surfaces of each of the second semiconductor layers, the second gate electrode layer having a second conductivity type opposite the first conductivity type.
    Type: Application
    Filed: January 15, 2023
    Publication date: April 11, 2024
    Inventors: Ta-Chun LIN, Chih-Hung HSIEH, Chun-Sheng LIANG, Wen-Chiang HONG, Chun-Wing YEUNG, Kuo-Hua PAN, Chih-Hao CHANG, Jhon Jhy LIAW
  • Publication number: 20240113205
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
    Type: Application
    Filed: November 28, 2023
    Publication date: April 4, 2024
    Inventors: Chih-Chiang Chang, Ming-Hua Yu, Li-Li Su
  • Publication number: 20240106425
    Abstract: A delay-locked loop (DLL) circuit includes a low pass filter coupled to a phase detector, and a digitally controlled delay line (DCDL) coupled to the low pass filter. The DCDL includes an input terminal, an output terminal coupled to an input terminal of the phase detector, and stages that propagate a signal along a first path from the input terminal to a selectable return stage and along a second path from the return stage to the output terminal. Each stage includes first and second inverters that selectively propagate the signal along the first and second paths, a third inverter that selectively propagates the signal from the first path to the second path, and either fourth and fifth inverters that selectively propagate the signal along the first and second paths, or a sixth inverter that selectively propagates the signal from the first path to the second path.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: Chung-Peng HSIEH, Chih-Chiang CHANG, Yung-Chow PENG
  • Publication number: 20240088892
    Abstract: A device including an inverter circuit, a hysteresis control circuit, and a high-side input level shifter. The inverter circuit having an output and including at least two series connected PMOS transistors connected, at the output, in series to at least two series connected NMOS transistors. The hysteresis control circuit coupled to the output to provide feedback to the at least two series connected PMOS transistors and to the at least two series connected NMOS transistors. The high-side input level shifter connected to gates of the at least two PMOS transistors and configured to shift a low level of an input signal to a higher level and provide the higher level to one or more of the gates of the at least two PMOS transistors.
    Type: Application
    Filed: August 10, 2023
    Publication date: March 14, 2024
    Inventors: Yung-Shun Chen, Chih-Chiang Chang, Yung-Chow Peng
  • Publication number: 20240078370
    Abstract: Various techniques are disclosed for automatically generating sub-cells for a non-final layout of an analog integrated circuit. Device specifications and partition information for the analog integrated circuit is received. Based on the device specifications and the partition information, first cut locations for a first set of cuts to be made along a first direction of a non-final layout of the analog integrated circuit and second cut locations for a second set of cuts to be made along a second direction in the non-final layout are determined. The first set of cuts are made in the non-final layout at the cut locations to produce a temporary layout. The second set of cuts are made in the temporary layout at the cut locations to produce a plurality of sub-cells.
    Type: Application
    Filed: August 10, 2023
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chiang Chang, Wen-Shen Chou, Yung-Chow Peng, Yung-Hsu Chuang, Yu-Tao Yang, Bindu Madhavi Kasina
  • Patent number: 11923252
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chi-On Chui, Chih-Chieh Yeh, Cheng-Hsien Wu, Chih-Sheng Chang, Tzu-Chiang Chen, I-Sheng Chen
  • Patent number: 11923304
    Abstract: The present disclosure relates to an integrated circuit. The integrated circuit includes a conductive interconnect disposed on a dielectric over a substrate. An interfacial layer is arranged along an upper surface of the conductive interconnect. A liner is arranged along a lower surface of the conductive interconnect. The liner and the interfacial layer surround the conductive interconnect. A middle layer is located over the interfacial layer and has a bottommost surface over the dielectric. A bottommost surface of the interfacial layer and the bottommost surface of the middle layer are both above a top of the conductive interconnect.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Jen Sung, Chih-Chiang Chang, Chia-Ho Chen
  • Patent number: 11869817
    Abstract: The invention comprises a light emitting diode chip and a package substrate. The light emitting diode chip is provided with a semiconductor epitaxial structure, a lateral extending interface structure, a chip conductive structure, an N-type electrode located above the semiconductor epitaxial structure and a P-type bypass detection electrode located on the lateral extending interface structure. The chip conductive structure is provided with a P-type main electrode located on a lower side. The package substrate comprises a plurality of electrode contacts through which the N-type electrode, the P-type bypass detection electrode and the P-type main electrode are connected, and a process quality of a alternative substrate adhesive layer in one of the semiconductor epitaxial structure and the chip conductive structure and a chip-substrate bonding adhesive layer between the P-type main electrode and the package substrate is evaluated by detecting electrical characteristics.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 9, 2024
    Assignee: EXCELLENCE OPTO. INC.
    Inventors: Fu-Bang Chen, Chih-Chiang Chang, Chang-Ching Huang, Chun-Ming Lai, Wen-Hsing Huang, Tzeng-Guang Tsai, Kuo-Hsin Huang
  • Patent number: 11869816
    Abstract: A package substrate comprises first, second and third electrical test contacts, wherein the package substrate is provided with an upper element plane and a lower SMD electrode plane on two sides. The side edge of the upper element plane is provided with first and second electrodes of the main element and first and second electrodes of the secondary element. The main element of LED chip is electrically connected between the first and second electrodes of the main element, a parallel circuit secondary element is electrically connected between the first and second electrodes of the secondary element. The electrical characteristics of the main element of LED chip and the parallel circuit secondary element are measured through the first, second, and third electrical test contacts when electrically connected.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 9, 2024
    Assignee: EXCELLENCE OPTO. INC.
    Inventors: Fu-Bang Chen, Chih-Chiang Chang, Chang-Ching Huang, Chun-Ming Lai, Wen-Hsing Huang, Tzeng-Guang Tsai, Kuo-Hsin Huang
  • Patent number: 11854960
    Abstract: A semiconductor device includes an active region over a substrate extending along a first lateral direction. The semiconductor device includes a number of first conductive structures operatively coupled to the active region. The first conductive structures extend along a second lateral direction. The semiconductor device includes a number of second conductive structures disposed above the plurality of first conductive structures. The second conductive structures extend along the first lateral direction. The semiconductor device includes a first capacitor having a first electrode and a second electrode. The first electrode includes one of the first conductive structures and the active region, and the second electrode includes a first one of the second conductive structures. Each of the active region and the first conductive structures is electrically coupled to a power rail structure configured to carry a supply voltage.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Ting Lu, Chih-Chiang Chang, Chung-Chieh Yang, Yung-Chow Peng
  • Patent number: 11855188
    Abstract: A method includes forming a first semiconductor fin and a second semiconductor fin in an n-type Fin Field-Effect (FinFET) region and a p-type FinFET region, respectively, forming a first dielectric fin and a second dielectric fin in the n-type FinFET region and the p-type FinFET region, respectively, forming a first epitaxy mask to cover the second semiconductor fin and the second dielectric fin, performing a first epitaxy process to form an n-type epitaxy region based on the first semiconductor fin, removing the first epitaxy mask, forming a second epitaxy mask to cover the n-type epitaxy region and the first dielectric fin, performing a second epitaxy process to form a p-type epitaxy region based on the second semiconductor fin, and removing the second epitaxy mask. After the second epitaxy mask is removed, a portion of the second epitaxy mask is left on the first dielectric fin.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Chiang Chang, Ming-Hua Yu, Li-Li Su
  • Patent number: 11855644
    Abstract: A digitally controlled delay line (DCDL) includes input and output terminals, and a plurality of stages that propagate a signal along a first signal path from the input terminal to a selectable return stage and along a second signal path from the return stage to the output terminal. Each stage includes a first inverter that selectively propagates the signal along the first signal path, a second inverter that selectively propagates the signal along the second signal path, and a third inverter that selectively propagates the signal from the first signal path to the second signal path. At least one of the first or third inverters includes a tuning portion including either a plurality of parallel, independently controllable p-type transistors coupled in series with a single independently controllable n-type transistor, or a plurality of parallel, independently controllable n-type transistors coupled in series with a single independently controllable p-type transistor.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Peng Hsieh, Chih-Chiang Chang, Yung-Chow Peng
  • Patent number: 11841485
    Abstract: A tethered imaging camera encapsulated in a shell lens element of such camera enables viewing from inside and imaging of a biological organ in/from a variety of directions. A portion of camera's optical system together with light source(s) and optical detector mutually cooperated by housing structure inside the shell are moveable/re-orientable within the shell to vary a desired view of the object space without interruption of imaging process. A tether carries electrical but not optical signals to and from the camera and controllable traction cords to move the camera, and a hand-control unit and/or electronic circuitry configured to operate the camera and power its movements. Method(s) of using optical, optoelectronic, and optoelectromechanical sub-systems of the camera.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: December 12, 2023
    Assignee: OMNISCIENT IMAGING, INC.
    Inventors: Bhaskar Banerjee, Richard Pfisterer, John Jameson, Chih-Chiang Chang, Haiyong Zhang
  • Patent number: 11835551
    Abstract: A device includes a control circuit, a scope circuit, a first logic gate and a second logic gate. The control circuit is configured to generate a first control signal according to a voltage signal and a delayed signal. The scope circuit is configured to generate a first current signal in response to the first control signal and the voltage signal. The first logic gate is configured to perform a first logical operation on the voltage signal and one of the voltage signal and the delayed signal to generate a second control signal. The second logical gate configured to perform a second logical operation on the second control signal and a test control signal to generate a second current signal.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Peng Hsieh, Chih-Chiang Chang, Chung-Chieh Yang
  • Publication number: 20230386994
    Abstract: A semiconductor device includes an active region over a substrate extending along a first lateral direction. The semiconductor device includes a number of first conductive structures operatively coupled to the active region. The first conductive structures extend along a second lateral direction. The semiconductor device includes a number of second conductive structures disposed above the plurality of first conductive structures. The second conductive structures extend along the first lateral direction. The semiconductor device includes a first capacitor having a first electrode and a second electrode. The first electrode includes one of the first conductive structures and the active region, and the second electrode includes a first one of the second conductive structures. Each of the active region and the first conductive structures is electrically coupled to a power rail structure configured to carry a supply voltage.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ting Lu, Chih-Chiang Chang, Chung-Chieh Yang, Yung-Chow Peng
  • Publication number: 20230384362
    Abstract: The present invention provides a speed detection circuit positioned in a chip, wherein the speed detection circuit includes a test signal generator, a launch flip-flop, a device under test (DUT), a capture flip-flop, a comparator and a control circuit. The test signal generator is configured to generate a test signal with a specific pattern. The launch flip-flop is configured to use a first clock signal to sample the test signal to generate a sampled test signal. The device under test is configured to receive the sampled test signal to generate a delayed test signal. The capture flip-flop is configured to use a second clock signal to sample the delayed test signal to generate an output signal. The comparator is configured to determine whether the output signal conforms to the specific pattern to generate a comparison result, for the control circuit to determine a speed of the chip.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 30, 2023
    Applicant: Realtek Semiconductor Corp.
    Inventor: Chih-Chiang Chang
  • Patent number: 11816060
    Abstract: An UART interface circuit is provided in the invention. The UART interface circuit is configured in an electronic device. The UART interface circuit includes a baud-rate generating circuit, a control circuit, and a receiving circuit. The baud-rate generating circuit is configured to generate a baud rate and a start-bit cycle. The control circuit obtains the wakeup stable time from the wakeup time circuit of the electronic device and obtains the start-bit cycle from the baud-rate generating circuit. The receiving circuit is configured to capture data from the start bit or the first data bit of UART data. When the electronic device is woken up by the UART data, the control circuit compares the start-bit cycle with the wakeup stable time to direct the receiving circuit to start capturing data from the start bit or the first data bit of the UART data.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: November 14, 2023
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventor: Chih-Chiang Chang
  • Patent number: 11816414
    Abstract: Various techniques are disclosed for automatically generating sub-cells for a non-final layout of an analog integrated circuit. Device specifications and partition information for the analog integrated circuit is received. Based on the device specifications and the partition information, first cut locations for a first set of cuts to be made along a first direction of a non-final layout of the analog integrated circuit and second cut locations for a second set of cuts to be made along a second direction in the non-final layout are determined. The first set of cuts are made in the non-final layout at the cut locations to produce a temporary layout. The second set of cuts are made in the temporary layout at the cut locations to produce a plurality of sub-cells.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd
    Inventors: Chih-Chiang Chang, Wen-Shen Chou, Yung-Chow Peng, Yung-Hsu Chuang, Yu-Tao Yang, Bindu Madhavi Kasina