Patents by Inventor Chih-Chiang Wu

Chih-Chiang Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170343
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Application
    Filed: January 24, 2024
    Publication date: May 23, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi YEONG, Bo-Feng YOUNG, Chi-On CHUI, Chih-Chieh YEH, Cheng-Hsien WU, Chih-Sheng CHANG, Tzu-Chiang CHEN, I-Sheng CHEN
  • Publication number: 20240162308
    Abstract: The present disclosure provides a semiconductor structure with having a source/drain feature with a central cavity, and a source/drain contact feature formed in central cavity of the source/drain region, wherein the source/drain contact feature is nearly wrapped around by the source/drain region. The source/drain contact feature may extend to a lower most of a plurality semiconductor layers.
    Type: Application
    Filed: February 9, 2023
    Publication date: May 16, 2024
    Inventors: Pin Chun SHEN, Che Chia CHANG, Li-Ying WU, Jen-Hsiang LU, Wen-Chiang HONG, Chun-Wing YEUNG, Ta-Chun LIN, Chun-Sheng LIANG, Shih-Hsun CHANG, Chih-Hao CHANG, Yi-Hsien CHEN
  • Patent number: 11923252
    Abstract: A semiconductor device includes a first set of nanostructures stacked over a substrate in a vertical direction, and each of the first set of nanostructures includes a first end portion and a second end portion, and a first middle portion laterally between the first end portion and the second end portion. The first end portion and the second end portion are thicker than the first middle portion. The semiconductor device also includes a first plurality of semiconductor capping layers around the first middle portions of the first set of nanostructures, and a gate structure around the first plurality of semiconductor capping layers.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sai-Hooi Yeong, Bo-Feng Young, Chi-On Chui, Chih-Chieh Yeh, Cheng-Hsien Wu, Chih-Sheng Chang, Tzu-Chiang Chen, I-Sheng Chen
  • Publication number: 20230369441
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Publication number: 20230369442
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih- Chiang Wu, Ti-Bin Chen
  • Patent number: 11757016
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: September 12, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Publication number: 20230202452
    Abstract: The disclosure provides a power control device, which comprises a bleeder circuit forming a first discharging path and an aux low-voltage (LV) power supply unit forming a second discharging path. The bleeder circuit is connected with a voltage-regulating capacitor stably maintaining the high-voltage (HV) level from a HV battery. The aux LV power supply unit is connected with the bleeder circuit and the voltage-regulating capacitor in parallel. The aux LV power supply unit provides an aux LV level to the driver, when the power system operates abnormally, the HV level is discharged through the first and second discharging path and/or a third discharging path formed by a driver and a motor.
    Type: Application
    Filed: December 27, 2021
    Publication date: June 29, 2023
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Chiang WU, Uma Sankar ROUT, Bang-Yuan LIU, Yun-Huan LI
  • Patent number: 11664425
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: May 30, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu
  • Publication number: 20230143658
    Abstract: A power module includes: a GaN transistor, an NMOS transistor, a first capacitor, a first diode and a second diode. The NMOS transistor is electrically connected to the GaN transistor. A negative electrode of the first capacitor is electrically connected to an anode of the first diode and a gate of the GaN transistor. A cathode of the second diode is electrically connected to a gate of the NMOS transistor. The power module further includes a power module control terminal electrically connected to an anode of the first capacitor and an anode of the second diode.
    Type: Application
    Filed: January 11, 2022
    Publication date: May 11, 2023
    Inventors: Ching-Yao LIU, Yueh-Tsung HSIEH, Kuo-Bin WANG, Chih-Chiang WU, Li-Chuan TANG, Wei-Hua CHIENG, Edward Yi CHANG, Stone CHENG
  • Patent number: 11646732
    Abstract: A power module includes: a GaN transistor, an NMOS transistor, a first capacitor, a first diode and a second diode. The NMOS transistor is electrically connected to the GaN transistor. A negative electrode of the first capacitor is electrically connected to an anode of the first diode and a gate of the GaN transistor. A cathode of the second diode is electrically connected to a gate of the NMOS transistor. The power module further includes a power module control terminal electrically connected to an anode of the first capacitor and an anode of the second diode.
    Type: Grant
    Filed: January 11, 2022
    Date of Patent: May 9, 2023
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Ching-Yao Liu, Yueh-Tsung Hsieh, Kuo-Bin Wang, Chih-Chiang Wu, Li-Chuan Tang, Wei-Hua Chieng, Edward Yi Chang, Stone Cheng
  • Publication number: 20230093515
    Abstract: A synchronous buck converter using a single gate drive control is provided and includes a drive circuit, a p-type gallium nitride (p-GaN) transistor switch module and an inductor. A gallium nitride power transistor is used as an upper side transistor switch, and a PMOS power transistor is used as a lower side transistor switch in the p-GaN transistor switch module. A gate of the upper side transistor switch and a gate of the lower side transistor switch are coupled to each other and receive a switch signal provided by the drive circuit at the same time. By controlling the on and off of the upper side transistor switch and the lower side transistor switch, the problem of simultaneous activation of the upper and lower side transistor switches can be avoided.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 23, 2023
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Li-Chuan Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Patent number: 11569696
    Abstract: A control method of a minimum power input applicable to a wireless power transfer system including a power transmission unit and at least one power receiving unit is provided. The power transmission unit is electrically connected with a control voltage signal and an input voltage signal and accordingly generates the minimum power input. The power transmission unit transmits the minimum power input wirelessly through a wireless transmission to the at least one power receiving unit for receiving. By adjusting the input voltage signal, the duty ratio and resonant frequency of the control voltage signal, the present invention ensures an optimal power transmission efficiency of the wireless power transmission system. Moreover, parameters of a charge pump reservoir and gate driving circuit can be further designed in view of the trend feedback of its gate drive waveforms so as to optimize the effect of the proposed invention.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: January 31, 2023
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Newton Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Publication number: 20230005795
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a metal gate on a substrate, a spacer around the metal gate, and a first interlayer dielectric (ILD) layer around the spacer, performing a plasma treatment process to transform the spacer into a first bottom portion and a first top portion, performing a cleaning process to remove the first top portion, and forming a second ILD layer on the metal gate and the first ILD layer.
    Type: Application
    Filed: August 3, 2021
    Publication date: January 5, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Po-Ching Su, Yu-Fu Wang, Min-Hua Tsai, Ti-Bin Chen, Chih-Chiang Wu, Tzu-Chin Wu
  • Publication number: 20220385093
    Abstract: The present disclosure provides a fast charging driver. The fast charging driver is configured to charge a battery of an electronic device. The fast charging driver includes a fast charging circuit and a charging controller. The fast charging circuit includes a first depletion-type GaN transistor, a first enhancement-type field effect transistor, a second depletion-type GaN transistor and a second enhancement-type field effect transistor. The charging controller is configured to control the fast charging circuit to operate in a constant current mode or a constant voltage mode according to a battery level of the battery. By utilizing the first depletion-type GaN transistor and the second depletion-type GaN transistor with a characteristic of a relatively low switching loss, the power consumption during charging the battery by the fast charging driver is decreased to improve the charge speed.
    Type: Application
    Filed: April 27, 2022
    Publication date: December 1, 2022
    Inventors: Edward Yi CHANG, Stone CHENG, Wei-Hua CHIENG, Shyr-Long JENG, Chih-Chiang WU
  • Publication number: 20220285999
    Abstract: A control method of a minimum power input applicable to a wireless power transfer system including a power transmission unit and at least one power receiving unit is provided. The power transmission unit is electrically connected with a control voltage signal and an input voltage signal and accordingly generates the minimum power input. The power transmission unit transmits the minimum power input wirelessly through a wireless transmission to the at least one power receiving unit for receiving. By adjusting the input voltage signal, the duty ratio and resonant frequency of the control voltage signal, the present invention ensures an optimal power transmission efficiency of the wireless power transmission system. Moreover, parameters of a charge pump reservoir and gate driving circuit can be further designed in view of the trend feedback of its gate drive waveforms so as to optimize the effect of the proposed invention.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 8, 2022
    Applicant: National Yang Ming Chiao Tung University
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Newton Tang, Chih-Chiang Wu, Ching-Yao Liu, Kuo-Bin Wang
  • Publication number: 20220223710
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a first region and a second region, forming a first bottom barrier metal (BBM) layer on the first region and the second region, forming a first work function metal (WFM) layer on the first BBM layer on the first region and the second region, and then forming a diffusion barrier layer on the first WFM layer.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fan Li, Wen-Yen Huang, Shih-Min Chou, Zhen Wu, Nien-Ting Ho, Chih-Chiang Wu, Ti-Bin Chen
  • Patent number: 11387824
    Abstract: A voltage-controlled varied frequency pulse width modulator is provided, including a frequency-regulating voltage output device which receives a determining voltage, decides a resonant frequency according to the determining voltage and outputs an oscillation signal having the resonant frequency. A duty-ratio-regulating voltage output device receives the oscillation signal and a reference signal to determine a duty ratio through an inverting closed loop, so as to adjust the oscillation signal to have the duty ratio. By employing the proposed voltage-controlled modulator circuit with tunable frequency and varied pulse width of the present invention, a modulation signal having the determined resonant frequency and duty ratio is obtained. Moreover, the present invention can be further combined with gate drive waveform trend feedback designs to achieve superior power transmission efficiency of a wireless power transmission system to optimize the inventive effect of the present invention.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: July 12, 2022
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Wei-Hua Chieng, Edward Yi Chang, Stone Cheng, Shyr-Long Jeng, Li-Chuan Tang, Chih-Chiang Wu, Yueh-Tsung Hsieh, Ching-Yao Liu, Kuo-Bin Wang
  • Publication number: 20220209694
    Abstract: An operation method and an operation device of a motor driver for driving a motor are provided. The operation method includes: establishing a hysteresis control method; and adjusting a switch frequency of a power module for operating the motor by using the hysteresis control method according to a change of rotation speed of the motor and a current switch frequency.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Chiang WU, Yun-Huan LI, Hsin-Ping CHOU, Shih-Hsiang WU
  • Patent number: 11374515
    Abstract: An operation method and an operation device of a motor driver for driving a motor are provided. The operation method includes: establishing a hysteresis control method; and adjusting a switch frequency of a power module for operating the motor by using the hysteresis control method according to a change of rotation speed of the motor and a current switch frequency.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: June 28, 2022
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Chiang Wu, Yun-Huan Li, Hsin-Ping Chou, Shih-Hsiang Wu
  • Publication number: 20220140080
    Abstract: A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shi-You Liu, Tsai-Yu Wen, Ching-I Li, Ya-Yin Hsiao, Chih-Chiang Wu, Yu-Chun Liu, Ti-Bin Chen, Shao-Ping Chen, Huan-Chi Ma, Chien-Wen Yu