Patents by Inventor Chih-Hsien Chang

Chih-Hsien Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11757436
    Abstract: An electrical system is provided. The electrical system comprises a first phase lock circuit embedded within a first chip for receiving a first periodic signal having a first frequency. The electrical system comprises a first buffering circuit embedded within the first chip for receiving a second periodic signal having the first frequency, wherein the first buffering circuit is configured to provide a third periodic signal having the first frequency to an output terminal of the first chip.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ruey-Bin Sheen, Tsung-Hsien Tsai, Chih-Hsien Chang
  • Publication number: 20230281366
    Abstract: Method and apparatus for optimizing circuit design are disclosed. In one aspect, the method includes receiving a circuit design of an integrated circuit and identifying a first circuit design of a first subsystem of the IC and a second circuit design of a second subsystem of the IC. The first subsystem operates on a plurality of digital variable signals and the second subsystem operates on a plurality of analog variable signals. The method also includes synthesizing a first HDL netlist based on the first circuit design, synthesizing a second HDL netlist based on the second circuit design, and obtaining behaviors of the circuit design of the IC using a single HDL-based simulator with both the first HDL netlist and the second HDL netlist as inputs.
    Type: Application
    Filed: July 6, 2022
    Publication date: September 7, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Fu Chin-Ming, Chih-Hsien Chang
  • Patent number: 11739929
    Abstract: An information handling system may include one or more illuminable icons to present information to a user of the system, such as information regarding a status of the information handling system. An illuminable icon may be lit by a plurality of light sources, and light from the plurality of light sources may be diffused across the illuminable icon by a light guide film. Some illuminable icons may have multiple portions that may be separately illuminated to convey different information to a user. An isolation block may prevent light from light sources configured to illuminate one portion of an illuminable icon from illuminating other portions of the illuminable icon. Thus, light for illuminating icons of an information handling system may be diffused and/or blocked to enhance aesthetic appeal of the icons and to prevent user confusion that may result from bleeding of light from one portion of an illuminable icon to another and/or uneven illumination of an icon.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: August 29, 2023
    Assignee: Dell Products L.P.
    Inventors: Yi-Chang Chen, Chih-Hsien Chang, Hsiang-Yin Hung
  • Patent number: 11742865
    Abstract: An integrated circuit device includes a digitally controlled oscillator (DCO), two charge-sharing capacitors, two charge-sharing switches, two pre-charge switches, and two DACs. The DCO has a first inverter and a second inverter. A first charge-sharing capacitor has a first terminal coupled to an input terminal of the first inverter through a first charge-sharing switch. A first DAC has an output terminal coupled to the first terminal of the first charge-sharing capacitor through a first pre-charge switch. A second charge-sharing capacitor has a first terminal coupled to an input terminal or an output terminal of the second inverter through a second charge-sharing switch. A second DAC has an output terminal coupled to the first terminal of the second charge-sharing capacitor through a second pre-charge switch.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Shueh Yuan, Chao-Chieh Li, Chia-Chun Liao, Yu-Tso Lin, Wen-Yuan Tsai, Chih-Hsien Chang
  • Publication number: 20230253970
    Abstract: Digital delay lock circuits and methods for operating digital delay lock circuits are provided. A phase detector is configured to receive first and second clock signals and generate a digital signal indicating a relationship between a phase of the first clock signal and a phase of the second clock signal. A phase accumulator circuit is configured to receive the digital signal and generate a phase signal based on values of the digital signal over multiple clock cycles. A decoder is configured to receive the phase signal and generate a digital control word based on the phase signal. A delay element is configured to receive the digital control word. The delay element is further configured to change the relationship between the phase of the first clock signal and the phase of the second clock signal by modifying the phase of the second clock signal according to the digital control word.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Tsung-Hsien Tsai, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 11689214
    Abstract: A device includes a phase detector circuit, a charge pump circuit, a sample and hold circuit, a comparator, and a controller. The phase detector circuit detects a clock skew between a reference signal and an input signal. The charge pump circuit translates the clock skew into a voltage. A sample and hold circuit samples the voltage, at a first time, and maintain the sampled voltage until a second time. The comparator (i) detects a loop gain associated with the input signal based on the sampled voltage and the voltage at the second time and (ii) outputs a loop gain signal for adjustment of the input signal. The controller is coupled to the phase detector, the comparator, and the sample and hold circuit. The controller generates a plurality of control signals for automatically controlling operation of the phase detector, the comparator, and the sample and hold circuit.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 11678454
    Abstract: An apparatus is disclosed that comprises a first structure configured to be connected to a chassis, a second structure configured to be attached to the first structure, the second structure including at least one first connector and a damper disposed between the first structure and the second structure, the damper configured to allow the second structure to move in one dimension relative to the first structure when the first connector is moved in a direction to be coupled to a second connector that is not aligned with the first connector.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: June 13, 2023
    Assignee: DELL PRODUCTS L.P.
    Inventors: Chih Hsien Chang, Yi Chang Chen
  • Patent number: 11664808
    Abstract: Digital delay lock circuits and methods for operating digital delay lock circuits are provided. A phase detector is configured to receive first and second clock signals and generate a digital signal indicating a relationship between a phase of the first clock signal and a phase of the second clock signal. A phase accumulator circuit is configured to receive the digital signal and generate a phase signal based on values of the digital signal over multiple clock cycles. A decoder is configured to receive the phase signal and generate a digital control word based on the phase signal. A delay element is configured to receive the digital control word. The delay element is further configured to change the relationship between the phase of the first clock signal and the phase of the second clock signal by modifying the phase of the second clock signal according to the digital control word.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: May 30, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Tsung-Hsien Tsai, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 11664793
    Abstract: A method and apparatus of generating precision phase skews is disclosed. In some embodiments, a phase skew generator includes: a charge pump having a first mode of operation and a second mode of operation, wherein the first mode of operation provides a first current path during a first time period, and the second mode of operation provides a second current path during a second time period following the first time period; a sample and hold circuit, coupled to a capacitor, and configured to sample a voltage level of the capacitor at predetermined times and provide an output voltage during a third time period following the second time period; and a voltage controlled delay line, coupled to the sample and hold circuit, and having M delay line stages each configured to output a signal having a phase skew offset with respect to preceding or succeeding signal.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: May 30, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Publication number: 20230147947
    Abstract: Systems, methods, and circuits for determining a duty cycle of a periodic input signal are provided. A delay element is configured to delay the periodic input signal based on a digital control word. A digital circuit is configured to generate a first digital control word used to delay the periodic input signal a first amount of time corresponding to a period of the periodic input signal, generate a second digital control word used to delay the periodic input signal a second amount of time corresponding to a portion of the periodic input signal having a logic-level high value, and generate a third digital control word used to delay the periodic input signal a third amount of time corresponding to a portion of the periodic input signal having a logic-level low value. A controller is configured to determine the duty cycle based on the first, second, and third digital control words.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 11, 2023
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 11646721
    Abstract: A controlling circuit for ring oscillator is provided. A first transistor and a second transistor of a first conductive type are coupled in series and between a node and a first power source. A third transistor and a fourth transistor of a second conductive type are coupled in parallel and between the node and a second power source. The node is coupled to an input of a delay chain of the ring oscillator. The second and third transistors are coupled in series. Gates of the second and third transistors are configured to receive an output signal of the delay chain. When the first transistor is turned off and the fourth transistor is turned on, the node is pulled to a first logic level from a second logic level in order to align a phase of a waveform of the ring oscillator.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: May 9, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20230118223
    Abstract: A circuit is disclosed. The circuit includes a time-to-digital converter (TDC), and an evaluation circuit coupled to the TDC and a phase-locked loop (PLL) external to the circuit.
    Type: Application
    Filed: December 7, 2022
    Publication date: April 20, 2023
    Inventors: CHAO CHIEH LI, CHIA-CHUN LIAO, MIN-SHUEH YUAN, CHIH-HSIEN CHANG
  • Publication number: 20230111482
    Abstract: Systems and methods are provided for a phase locked loop. A phase/frequency detector is configured to receive a reference signal and a feedback signal. A charge pump is configured to receive outputs from the phase/frequency detector and to generate pulses. An oscillator is configured to generate an output waveform based on the charge pump pulses. A realignment path is configured to generate a clock realignment signal that is provided to the oscillator based on the outputs from the phase/frequency detector.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Inventors: Tsung-Hsien Tsai, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Publication number: 20230090529
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang
  • Publication number: 20230061783
    Abstract: An electrical system is provided. The electrical system comprises a first phase lock circuit embedded within a first chip for receiving a first periodic signal having a first frequency. The electrical system comprises a first buffering circuit embedded within the first chip for receiving a second periodic signal having the first frequency, wherein the first buffering circuit is configured to provide a third periodic signal having the first frequency to an output terminal of the first chip.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Ruey-Bin Sheen, Tsung-Hsien Tsai, Chih-Hsien Chang
  • Publication number: 20230052899
    Abstract: An integrated circuit device includes a digitally controlled oscillator (DCO), two charge-sharing capacitors, two charge-sharing switches, two pre-charge switches, and two DACs. The DCO has a first inverter and a second inverter. A first charge-sharing capacitor has a first terminal coupled to an input terminal of the first inverter through a first charge-sharing switch. A first DAC has an output terminal coupled to the first terminal of the first charge-sharing capacitor through a first pre-charge switch. A second charge-sharing capacitor has a first terminal coupled to an input terminal or an output terminal of the second inverter through a second charge-sharing switch. A second DAC has an output terminal coupled to the first terminal of the second charge-sharing capacitor through a second pre-charge switch.
    Type: Application
    Filed: January 31, 2022
    Publication date: February 16, 2023
    Inventors: Min-Shueh YUAN, Chao-Chieh LI, Chia-Chun LIAO, Yu-Tso LIN, Wen-Yuan TSAI, Chih-Hsien CHANG
  • Publication number: 20230016886
    Abstract: Digital delay lock circuits and methods for operating digital delay lock circuits are provided. A phase detector is configured to receive first and second clock signals and generate a digital signal indicating a relationship between a phase of the first clock signal and a phase of the second clock signal. A phase accumulator circuit is configured to receive the digital signal and generate a phase signal based on values of the digital signal over multiple clock cycles. A decoder is configured to receive the phase signal and generate a digital control word based on the phase signal. A delay element is configured to receive the digital control word. The delay element is further configured to change the relationship between the phase of the first clock signal and the phase of the second clock signal by modifying the phase of the second clock signal according to the digital control word.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 19, 2023
    Inventors: Tsung-Hsien Tsai, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang, Cheng-Hsiang Hsieh
  • Patent number: 11555842
    Abstract: A system, a method and a built-in phase noise measurement apparatus are introduced. The built-in phase noise measurement apparatus includes a first DLL and a TDC, in which the first DLL circuit controls a delay of a first signal to generate a second signal based on a control code, tune the control code until a phase of the second signal is aligned to a phase of a reference clock signal, and record a value of the control code when the phase of the second signal is aligned to the phase of the reference clock signal. The DLL circuit controls the delay of the first signal based on the value of the control code after the phase of the second signal is aligned to the phase of the reference clock signal. The TDC determines the phase noise of the first signal based on the reference clock signal and the second signal.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: January 17, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mao-Hsuan Chou, Chih-Hsien Chang, Ruey-Bin Sheen, Ya-Tin Chang
  • Patent number: 11555851
    Abstract: An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (??) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ?? TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ?? TDCs are connected to one another in a MASH type configuration to provide the MASH type high-order ?? TDC, wherein the MASH type high-order ?? TDC is configured to measure the phase noise of a device under text (DUT).
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 11543851
    Abstract: An impedance measurement circuit and an operating method thereof are provided. The impedance measurement circuit includes a current source, a voltage controlled oscillator (VCO), an operation circuit, and a first delay circuit. The current source, electrically connected to a power rail, is able to sink a current from the power rail according to the delayed clock signal. The VCO is configured to generate an oscillation signal according to a power voltage on the power rail. The operation circuit is electrically connected to the VCO and is configured to receive a sampling clock signal and the oscillation signal, sense the power voltage to generate a sampled signal, and accumulate the sampled signal to generate a measurement result. The first delay circuit, electrically connected to the current source and the operation circuit, is able to receive the sampling clock signal and transmit the delayed clock signal to the current source.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Che Lu, Chin-Ming Fu, Chih-Hsien Chang