Patents by Inventor Chih-Wei Chiang

Chih-Wei Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240184195
    Abstract: In a method of manufacturing a photo mask, a resist layer is formed over a mask blank, which includes a mask substrate, a phase shift layer disposed on the mask substrate and a light blocking layer disposed on the phase shift layer. A resist pattern is formed by using a lithographic operation. The light blocking layer is patterned by using the resist pattern as an etching mask. The phase shift layer is patterned by using the patterned light blocking layer as an etching mask. A border region of the mask substrate is covered with an etching hard cover, while a pattern region of the mask substrate is opened. The patterned light blocking layer in the pattern region is patterned through the opening of the etching hard cover. A photo-etching operation is performed on the pattern region to remove residues of the light blocking layer.
    Type: Application
    Filed: January 12, 2024
    Publication date: June 6, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh TIEN, Cheng-Hsuen CHIANG, Chih-Ming CHEN, Cheng-Ming LIN, Yen-Wei HUANG, Hao-Ming CHANG, Kuo-Chin LIN, Kuan-Shien LEE
  • Publication number: 20240176094
    Abstract: An optical system is provided, including a first module configured to hold a first optical member. The first module includes a first movable portion, a first fixed portion, and a first driving assembly. The first movable portion is configured to connect the first optical member, and is movable relative to the fixed portion. The first driving assembly is configured to drive the first movable portion to move relative to the fixed portion.
    Type: Application
    Filed: November 28, 2023
    Publication date: May 30, 2024
    Inventors: Chia-Che WU, Chao-Chang HU, Yung-Hsien YEH, Chih-Wei WENG, Chih-Wen CHIANG, Yu-Chiao LO, Sin-Jhong SONG
  • Publication number: 20240176093
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Application
    Filed: February 5, 2024
    Publication date: May 30, 2024
    Inventors: Chao-Chang HU, Chih-Wei WENG, Chia-Che WU, Chien-Yu KAO, Hsiao-Hsin HU, He-Ling CHANG, Chao-Hsi WANG, Chen-Hsien FAN, Che-Wei CHANG, Mao-Gen JIAN, Sung-Mao TSAI, Wei-Jhe SHEN, Yung-Ping YANG, Sin-Hong LIN, Tzu-Yu CHANG, Sin-Jhong SONG, Shang-Yu HSU, Meng-Ting LIN, Shih-Wei HUNG, Yu-Huai LIAO, Mao-Kuo HSU, Hsueh-Ju LU, Ching-Chieh HUANG, Chih-Wen CHIANG, Yu-Chiao LO, Ying-Jen WANG, Shu-Shan CHEN, Che-Hsiang CHIU
  • Publication number: 20240178102
    Abstract: A package includes a frontside redistribution layer (RDL) structure, a semiconductor die on the frontside RDL structure, and a backside RDL structure on the semiconductor die including a first RDL, and a backside connector extending from a distal side of the first RDL and including a tapered portion having a width that decreases in a direction away from the first RDL, wherein the tapered portion includes a contact surface at an end of the tapered portion. A method of forming the package may include forming the backside redistribution layer (RDL) structure, attaching a semiconductor die to the backside RDL structure, forming an encapsulation layer around the semiconductor die on the backside RDL structure, and forming a frontside RDL structure on the semiconductor die and the encapsulation layer.
    Type: Application
    Filed: April 21, 2023
    Publication date: May 30, 2024
    Inventors: Chun-Ti LU, Hao-Yi TSAI, Chiahung LIU, Ken-Yu CHANG, Tzuan-Horng LIU, Chih-Hao CHANG, Bo-Jiun LIN, Shih-Wei CHEN, Pei-Rong NI, Hsin-Wei HUANG, Zheng GangTsai, Tai-You LIU, Steve SHIH, Yu-Ting HUANG, Steven SONG, Yu-Ching WANG, Tsung-Yuan YU, Hung-Yi KUO, CHung-Shi LIU, Tsung-Hsien CHIANG, Ming Hung TSENG, Yen-Liang LIN, Tzu-Sung HUANG, Chun-Chih CHUANG
  • Publication number: 20240176159
    Abstract: An optical system that includes a first module is provided. The first module includes a first movable portion, a first fixed portion, and a first driving assembly. The first movable portion is configured to connect the first optical member, and is movable relative to the first fixed portion. The first driving assembly is configured to drive the first movable portion to move relative to the first fixed portion.
    Type: Application
    Filed: November 28, 2023
    Publication date: May 30, 2024
    Inventors: Chia-Che WU, Chao-Chang HU, Yung-Hsien YEH, Chih-Wei WENG, Chih-Wen CHIANG, Yu-Chiao LO, Sin-Jhong SONG
  • Patent number: 11997311
    Abstract: Video processing methods and apparatuses for coding a current block generate a final predictor by combining multiple predictors of the current block. One of the predictors for the current block is a motion compensated predictor, which is generated according to one candidate selected from a first candidate list. The construction of the first candidate list includes deriving an average candidate by averaging motion information of existing candidates in the first candidate list. A second predictor for the current block is another motion compensated predictor or an intra predictor.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 28, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Man-Shu Chiang, Chih-Wei Hsu
  • Patent number: 11996334
    Abstract: A method includes providing a first channel layer and a second channel layer over a substrate; forming a first patterned hard mask covering the first channel layer and exposing the second channel layer; selectively depositing a cladding layer on the second channel layer and not on the first patterned hard mask; performing a first thermal drive-in process; removing the first patterned hard mask; after removing the first patterned hard mask, forming an interfacial dielectric layer on the cladding layer and the first channel layer; and forming a high-k dielectric layer on the interfacial dielectric layer.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11991393
    Abstract: Video processing methods and apparatuses in a video encoding or decoding system for transforming residuals of transform blocks into final transform coefficients or inverse transforming final transform coefficients into residuals. In order to solve the latency issue, exemplary embodiments check if a width or height of a coding block is larger than a predefined threshold, and disable secondary transform or inverse secondary transform for any transform block within the coding block if the width or height of the coding block is larger than the predefined threshold. Another embodiment checks if there are multiple transform blocks in a coding block, and disables secondary transform or inverse secondary transform if the coding block contains multiple transform blocks.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: May 21, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Man-Shu Chiang, Chih-Wei Hsu, Tzu-Der Chuang, Ching-Yeh Chen
  • Publication number: 20240145470
    Abstract: A method for processing an integrated circuit includes forming first and second gate all around transistors. The method forms a dipole oxide in the first gate all around transistor without forming the dipole oxide in the second gate all around transistor. This is accomplished by entirely removing an interfacial dielectric layer and a dipole-inducing layer from semiconductor nanosheets of the second gate all around transistor before redepositing the interfacial dielectric layer on the semiconductor nanosheets of the second gate all around transistor.
    Type: Application
    Filed: January 5, 2024
    Publication date: May 2, 2024
    Inventors: Lung-Kun CHU, Mao-Lin HUANG, Chung-Wei HSU, Jia-Ni YU, Kuo-Cheng CHIANG, Kuan-Lun CHENG, Chih-Hao WANG
  • Patent number: 11961840
    Abstract: A semiconductor device structure is provided. The device includes one or more first semiconductor layers, each first semiconductor layer of the one or more first semiconductor layers is surrounded by a first intermixed layer, wherein the first intermixed layer comprises a first material and a second material.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11961913
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a source/drain feature on a semiconductor fin structure, a first isolation structure surrounding the semiconductor fin structure, source/drain spacers on the first isolation structure and surrounding a lower portion of the source/drain feature, a dielectric fin structure adjoining and in direct contact with the first isolation structure and one of the source/drain spacers, and an interlayer dielectric layer over the source/drain spacers and the dielectric fin structure and surrounding an upper portion of the source/drain feature.
    Type: Grant
    Filed: April 21, 2023
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Shi-Ning Ju, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Publication number: 20240120402
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.
    Type: Application
    Filed: November 19, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chun-Fu LU, Chih-Hao WANG, Kuan-Lun CHENG
  • Publication number: 20240120018
    Abstract: A memory device, a failure bits detector, and a failure bits detection method thereof are provided. The failure bits detector includes a current generator, a current mirror, and a comparator. The current generator generates a first current according to a reference code. The current mirror mirrors the first current to generate a second current at a second end of the current mirror. The comparator compares a first voltage at a first input end with a second voltage at a second input end to generate a detection result.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 11, 2024
    Applicant: MACRONIX International Co., Ltd.
    Inventors: Chung-Han Wu, Che-Wei Liang, Chih-He Chiang, Shang-Chi Yang
  • Patent number: 11956421
    Abstract: Method and apparatus of video coding are disclosed. According to one method, in the decoder side, a predefined Intra mode is assigned to a neighboring block adjacent to the current luma block when the neighboring block satisfies one or more conditions. An MPM (Most Probable Mode) list is derived based on information comprising at least one of neighboring Intra modes. A current Intra mode is derived utilizing the MPM list. The current luma block is decoded according to the current Intra mode According to another method, a predefined Intra mode is assigned to a neighboring block adjacent to the current luma block if the neighboring block is coded in BDPCM (Block-based Delta Pulse Code Modulation) mode, where the predefined Intra mode is set to horizontal mode or vertical mode depending on prediction direction used by the BDPCM mode.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: April 9, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Man-Shu Chiang, Chih-Wei Hsu, Tzu-Der Chuang, Ching-Yeh Chen, Yu-Wen Huang, Shih-Ta Hsiang
  • Patent number: 11956469
    Abstract: Video processing methods and apparatuses implemented in a video encoding or decoding system with conditional secondary transform signaling. The video encoding system determines and applies a transform operation to residuals of a transform block to generate final transform coefficients, and adaptively signals a secondary transform index according to a position of a last significant coefficient in the transform block. A value of the secondary transform index is determined according to the transform operation.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: April 9, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Man-Shu Chiang, Chih-Wei Hsu, Tzu-Der Chuang, Ching-Yeh Chen
  • Publication number: 20240113195
    Abstract: Semiconductor structures and methods for forming the same are provided. The semiconductor structure includes a plurality of first nanostructures formed over a substrate, and a dielectric wall adjacent to the first nanostructures. The semiconductor structure also includes a first liner layer between the first nanostructures and the dielectric wall, and the first liner layer is in direct contact with the dielectric wall. The semiconductor structure also includes a gate structure surrounding the first nanostructures, and the first liner layer is in direct contact with a portion of the gate structure.
    Type: Application
    Filed: February 22, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-Ni YU, Lung-Kun CHU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: 11948987
    Abstract: A semiconductor device according to the present disclosure includes a source feature and a drain feature, a plurality of semiconductor nanostructures extending between the source feature and the drain feature, a gate structure wrapping around each of the plurality of semiconductor nanostructures, a bottom dielectric layer over the gate structure and the drain feature, a backside power rail disposed over the bottom dielectric layer, and a backside source contact disposed between the source feature and the backside power rail. The backside source contact extends through the bottom dielectric layer.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11943476
    Abstract: Video processing methods and apparatuses implemented in a video encoding or decoding system with conditional secondary transform signaling. The video encoding system determines and applies a transform operation to residuals of one or more transform blocks to generate final transform coefficients, and skip signaling a secondary transform index if a position of a last significant coefficient in each considered transform block is less than or equal to a predefined position; otherwise, the video encoding system signals a secondary transform index according to the transform operation.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: March 26, 2024
    Assignee: HFI INNOVATION INC.
    Inventors: Man-Shu Chiang, Chih-Wei Hsu, Tzu-Der Chuang, Ching-Yeh Chen
  • Publication number: 20240096880
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first channel structure configured to transport charge carriers within a first transistor device and a first gate electrode layer wrapping around the first channel structure. A second channel structure is configured to transport charge carriers within a second transistor device. A second gate electrode layer wraps around the second channel structure. The second gate electrode layer continuously extends from around the second channel structure to cover the first gate electrode layer. A third channel structure is configured to transport charge carriers within a third transistor device. A third gate electrode layer wraps around the third channel structure. The third gate electrode layer continuously extends from around the third channel structure to cover the second gate electrode layer.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 21, 2024
    Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu