Patents by Inventor Chih-Yang Chang

Chih-Yang Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11726747
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Patent number: 11723292
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a dielectric protection layer having sidewalls defining an opening over a conductive interconnect within an inter-level dielectric (ILD) layer. A bottom electrode structure extends from within the opening to directly over the dielectric protection layer. A variable resistance layer is over the bottom electrode structure and a top electrode is over the variable resistance layer. A top electrode via is disposed on the top electrode and directly over the dielectric protection layer.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Patent number: 11719742
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: August 8, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Publication number: 20230245865
    Abstract: A processing chamber includes a grid and a first disk. The grid includes a plurality of holes arranged in the processing chamber. The grid partitions the processing chamber into a first chamber in which plasma is generated and a second chamber in which a pedestal is configured to support a substrate. The first disk is arranged in the second chamber. The first disk is movable between the grid and the substrate when supported on the pedestal.
    Type: Application
    Filed: May 17, 2022
    Publication date: August 3, 2023
    Inventors: Chih-Min LIN, Shuogang HUANG, Seokmin YUN, Chih-Yang CHANG, Chih-Ming CHANG, Shih-Yuan CHENG
  • Patent number: 11678494
    Abstract: Various embodiments of the present application are directed a memory layout for reduced line loading. In some embodiments, a memory device comprises an array of bit cells, a first conductive line, a second conductive line, and a plurality of conductive bridges. The first and second conductive lines may, for example, be source lines or some other conductive lines. The array of bit cells comprises a plurality of rows and a plurality of columns, and the plurality of columns comprise a first column and a second column. The first conductive line extends along the first column and is electrically coupled to bit cells in the first column. The second conductive line extends along the second column and is electrically coupled to bit cells in the second column. The conductive bridges extend from the first conductive line to the second conductive line and electrically couple the first and second conductive lines together.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu
  • Publication number: 20230112479
    Abstract: The present invention provides a photodiode, which includes: a light absorption substrate, a first electrode portion, a second electrode portion, an antireflection layer, and a distributed Bragg reflection layer. The antireflection layer is arranged to receive light to get into the light absorption substrate. The antireflection layer is arranged to receive light to get into the light absorption substrate, and the distributed Bragg reflection layer is arranged to reflect light transmitting through the light absorption substrate to exit from the light absorption substrate back to the light absorption substrate, in order to enhance the photocurrent and the spectrum sensitivity of the photodiode.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 13, 2023
    Inventors: SHIH-KANG CHEN, CHIH-YANG CHANG, CHENG-YI HSU
  • Publication number: 20230115281
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data sate. The first random bit is then read from the MRAM cell.
    Type: Application
    Filed: December 9, 2022
    Publication date: April 13, 2023
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Patent number: 11531524
    Abstract: In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data state. The first random bit is then read from the MRAM cell.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Chih-Hui Weng, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang, Chia-Hsiang Chen
  • Publication number: 20220373594
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 11506706
    Abstract: In some embodiments, a semiconductor wafer testing system is provided. The semiconductor wafer testing system includes a semiconductor wafer prober having one or more conductive probes, where the semiconductor wafer prober is configured to position the one or more conductive probes on an integrated chip (IC) that is disposed on a semiconductor wafer. The semiconductor wafer testing system also includes a ferromagnetic wafer chuck, where the ferromagnetic wafer chuck is configured to hold the semiconductor wafer while the wafer prober positions the one or more conductive probes on the IC. An upper magnet is disposed over the ferromagnetic wafer chuck, where the upper magnet is configured to generate an external magnetic field between the upper magnet and the ferromagnetic wafer chuck, and where the ferromagnetic wafer chuck amplifies the external magnetic field such that the external magnetic field passes through the IC with an amplified magnetic field strength.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Chih-Yang Chang, Ching-Huang Wang, Tien-Wei Chiang, Meng-Chun Shih, Chia Yu Wang
  • Patent number: 11387411
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20220209111
    Abstract: Some embodiments relate to an integrated circuit including one or more memory cells arranged over a semiconductor substrate between an upper metal interconnect layer and a lower metal interconnect layer. A memory cell includes a bottom electrode disposed over the lower metal interconnect layer, a data storage or dielectric layer disposed over the bottom electrode, and a top electrode disposed over the data storage or dielectric layer. An upper surface of the top electrode is in direct contact with the upper metal interconnect layer without a via or contact coupling the upper surface of the top electrode to the upper metal interconnect layer. Sidewall spacers are arranged along sidewalls of the top electrode, and have bottom surfaces that rest on an upper surface of the data storage or dielectric layer.
    Type: Application
    Filed: March 15, 2022
    Publication date: June 30, 2022
    Inventors: Chih-Yang Chang, Wen-Ting Chu
  • Publication number: 20220157889
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain has a zero-tilt doping profile and the source has a tilted doping profile. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20220102428
    Abstract: A method for fabricating an integrated circuit is provided. The method includes depositing a dielectric layer over a conductive feature; etching an opening in the dielectric layer to expose the conductive feature, such that the dielectric layer has a tapered sidewall surrounding the opening; depositing a bottom electrode layer into the opening in the dielectric layer; depositing a resistance switch layer over the bottom electrode layer; patterning the resistance switch layer and the bottom electrode layer respectively into a resistance switch element and a bottom electrode, in which a sidewall of the bottom electrode is landing on the tapered sidewall of the dielectric layer.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chieh-Fei CHIU, Wen-Ting CHU, Yong-Shiuan TSAIR, Yu-Wen LIAO, Chih-Yang CHANG, Chin-Chieh YANG
  • Publication number: 20220093849
    Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 24, 2022
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
  • Publication number: 20220093687
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first resistive random access memory (RRAM) element over a substrate. The first RRAM element has a first terminal and a second terminal. A second RRAM element is arranged over the substrate and has a third terminal and a fourth terminal. The third terminal is electrically coupled to the first terminal of the first RRAM element. A reading circuit is coupled to the second terminal and the fourth terminal. The reading circuit is configured to read a single data state from both a first non-zero read current received from the first RRAM element and a second non-zero read current received from the second RRAM element.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20220085280
    Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 17, 2022
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
  • Patent number: 11276819
    Abstract: Some embodiments relate to an integrated circuit including one or more memory cells arranged over a semiconductor substrate between an upper metal interconnect layer and a lower metal interconnect layer. A memory cell includes a bottom electrode disposed over the lower metal interconnect layer, a data storage or dielectric layer disposed over the bottom electrode, and a top electrode disposed over the data storage or dielectric layer. An upper surface of the top electrode is in direct contact with the upper metal interconnect layer without a via or contact coupling the upper surface of the top electrode to the upper metal interconnect layer. Sidewall spacers are arranged along sidewalls of the top electrode, and have bottom surfaces that rest on an upper surface of the data storage or dielectric layer.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu
  • Patent number: 11249131
    Abstract: A test apparatus includes a tray including at least a first region and a second region, and a cap disposed over the tray. The cap includes a cap body, and at least a first magnet and a second magnet disposed over the cap body. The first magnet is configured to provide a first magnetic field to the first region of the tray, and the second magnet is configured to provide a second magnetic field to the second region of the tray. A strength of the first magnetic field is different from a strength of the second magnetic field.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: February 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Harry-Hak-Lay Chuang, Tien-Wei Chiang, Chia Yu Wang, Meng-Chun Shih, Ching-Huang Wang, Chih-Yang Chang, Chia-Hsiang Chen, Chih-Hui Weng
  • Patent number: 11239279
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain has a zero-tilt doping profile and the source has a tilted doping profile. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao