Patents by Inventor Chih-Yi Peng

Chih-Yi Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942380
    Abstract: A method includes forming a dummy pattern over test region of a substrate; forming an interlayer dielectric (ILD) layer laterally surrounding the dummy pattern; removing the dummy pattern to form an opening; forming a dielectric layer in the opening; performing a first testing process on the dielectric layer; performing an annealing process to the dielectric layer; and performing a second testing process on the annealed dielectric layer.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Shiang Lin, Chia-Cheng Ho, Chun-Chieh Lu, Cheng-Yi Peng, Chih-Sheng Chang
  • Patent number: 11942549
    Abstract: A semiconductor device and method of manufacture are provided. In embodiments a first liner is deposited to line a recess between a first semiconductor fin and a second semiconductor fin, the first liner comprising a first material. The first liner is annealed to transform the first material to a second material. A second liner is deposited to line the recess, the second liner comprising a third material. The second liner is annealed to transform the third material to a fourth material.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yi Kao, Yu-Cheng Shiau, Chunyao Wang, Chih-Tang Peng, Yung-Cheng Lu, Chi On Chui
  • Publication number: 20240088267
    Abstract: A semiconductor device comprises a fin structure disposed over a substrate; a gate structure disposed over part of the fin structure; a source/drain structure, which includes part of the fin structure not covered by the gate structure; an interlayer dielectric layer formed over the fin structure, the gate structure, and the source/drain structure; a contact hole formed in the interlayer dielectric layer; and a contact material disposed in the contact hole. The fin structure extends in a first direction and includes an upper layer, wherein a part of the upper layer is exposed from an isolation insulating layer. The gate structure extends in a second direction perpendicular to the first direction. The contact material includes a silicon phosphide layer and a metal layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi PENG, Chih Chieh YEH, Chih-Sheng CHANG, Hung-Li CHIANG, Hung-Ming CHEN, Yee-Chia YEO
  • Publication number: 20080135826
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures including, for example, nanotubes, nanowires, nanoribbons, and nanotapes, including SiNW, using a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and may be built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed and may become part of the structure. Nanodevices such as nanotweezers, nanocantilevers, and nanobridges are formed utilizing the processes of the invention.
    Type: Application
    Filed: June 27, 2007
    Publication date: June 12, 2008
    Inventors: Stephen Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kaan Kalkan, Joseph D. Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Jun Nam
  • Patent number: 7238594
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures including, for example, nanotubes, nanowires, nanoribbons, and nanotapes, including SiNW, using a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and may be built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed and may become part of the structure. Nanodevices such as nanotweezers, nanocantilevers, and nanobridges are formed utilizing the processes of the invention.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: July 3, 2007
    Assignee: The Penn State Research Foundation
    Inventors: Stephen J. Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kaan Kalkan, Joseph D. Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Jun Nam
  • Publication number: 20050176228
    Abstract: This invention presents a novel method to form uniform or heterogeneous, straight or curved and size-controllable nanostructures, nanowires, and nanotapes, including SiNW, in a nanochannel template. In the case of semiconductor nanowires, doping can be included during growth. Electrode contacts are present as needed and built in to the template structure. Thus completed devices such as diodes, transistors, solar cells, sensors, and transducers are fabricated, contacted, and arrayed as nanowire or nanotape fabrication is completed. Optionally, the template is not removed may become part of the structure. Nanostructures such as nanotweezers, nanocantiliver, and nanobridges are formed utilizing the processes of the invention.
    Type: Application
    Filed: December 13, 2004
    Publication date: August 11, 2005
    Inventors: Stephen Fonash, Yinghui Shan, Chih-Yi Peng, Ali Kalkan, Joseph Cuiffi, Daniel Hayes, Paul Butterfoss, Wook Nam
  • Publication number: 20040005258
    Abstract: The invention relates to chemical reactor templates having channel-like voids parallel to the template's major axis. The channel-like voids may have either micro-scale or nano-scale cross sectional areas. The chemical reactor templates may be used to produce micro- and nano-scale filaments and particles which have a variety of uses. In some embodiments a chemical reactor template of the invention have at least two intersecting channel-like voids substantially parallel to the major axis of said template. The invention also relates to methods for manufacturing a chemical reactor template using sacrificial layers. The chemical reactor templates of the invention may be fabricated to have multiple arrays of channel-like structures as well as vertical elements to provide access to act as contacts for the channel-like voids and materials formed within the template. The invention relates to methods for producing filaments and particles using a chemical reactor template.
    Type: Application
    Filed: December 12, 2002
    Publication date: January 8, 2004
    Inventors: Stephen J. Fonash, Chih-Yi Peng, Ayusmen Sen, Seong H. Kim, Henry C. Foley, Bin Gu, Wook Jun Nam, Kyuhwan Chang