Patents by Inventor Chih-Yu MA

Chih-Yu MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935955
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20240014321
    Abstract: A dopant boost in the source/drain regions of a semiconductor device, such as a transistor can be provided. A semiconductor device can include a doped epitaxy of a first material having a plurality of boosting layers embedded within. The boosting layers can be of a second material different from the first material. Another device can include a source/drain feature of a transistor. The source/drain feature includes a doped source/drain material and one or more embedded distinct boosting layers. A method includes growing a boosting layer in a recess of a substrate, where the boosting layer is substantially free of dopant. The method also includes growing a layer of doped epitaxy in the recess on the boosting layer.
    Type: Application
    Filed: August 7, 2023
    Publication date: January 11, 2024
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20230326800
    Abstract: Embodiments of the present disclosure provide methods for forming merged source/drain features from two or more fin structures. The merged source/drain features according to the present disclosure have a merged portion with an increased height percentage over the overall height of the source/drain feature. The increase height percentage provides an increased landing range for source/drain contact features, therefore, reducing the connection resistance between the source/drain feature and the source/drain contact features. In some embodiments, the emerged source/drain features include one or more voids formed within the merged portion.
    Type: Application
    Filed: June 4, 2023
    Publication date: October 12, 2023
    Inventors: Shahaji B. More, Chung-Hsien Yeh, Chih-Yu Ma
  • Patent number: 11776851
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20230299082
    Abstract: Some implementations described herein provide techniques and apparatuses for forming insulator layers in or on a semiconductor substrate prior to forming epitaxial layers within source/drain regions of a fin field-effect transistor. The epitaxial layers may be formed over the insulator layers to reduce electron tunneling between the source/drain regions of the fin field-effect transistor. In this way, a likelihood of leakage into the semiconductor substrate and/or between the source/drain regions of the fin field-effect transistor is reduced.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 21, 2023
    Inventors: Sheng-Syun WONG, Shahaji B. MORE, Chih-Yu MA
  • Patent number: 11721760
    Abstract: A dopant boost in the source/drain regions of a semiconductor device, such as a transistor can be provided. A semiconductor device can include a doped epitaxy of a first material having a plurality of boosting layers embedded within. The boosting layers can be of a second material different from the first material. Another device can include a source/drain feature of a transistor. The source/drain feature includes a doped source/drain material and one or more embedded distinct boosting layers. A method includes growing a boosting layer in a recess of a substrate, where the boosting layer is substantially free of dopant. The method also includes growing a layer of doped epitaxy in the recess on the boosting layer.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: August 8, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 11705371
    Abstract: Embodiments of the present disclosure provide methods for forming merged source/drain features from two or more fin structures. The merged source/drain features according to the present disclosure have a merged portion with an increased height percentage over the overall height of the source/drain feature. The increase height percentage provides an increased landing range for source/drain contact features, therefore, reducing the connection resistance between the source/drain feature and the source/drain contact features. In some embodiments, the emerged source/drain features include one or more voids formed within the merged portion.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chung-Hsien Yeh, Chih-Yu Ma
  • Publication number: 20230154802
    Abstract: A structure includes a stepped crystalline substrate that includes an upper step, a lower step, and a step rise. A first fin includes a crystalline structure having a first lattice constant. The first fin is formed over the lower step. A second fin includes a crystalline structure having a second lattice constant, the second lattice constant being different than the first lattice constant. The second fin can be formed over the upper step apart from the first fin. A second crystalline structure can be formed over the first crystalline structure and the tops of the fins aligned. The first and second fins can be made of the same material, but with different heights and different channel strain values. The first fin can be used as an NMOS fin and the second fin can be used as a PMOS fin of a CMOS FinFET.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 18, 2023
    Inventors: Cheng-Han Lee, Chih-Yu Ma, Shih-Chieh Chang
  • Publication number: 20230143537
    Abstract: In some implementations, a control device may determine a spacing measurement in a first dimension between a wafer on a susceptor and a pre-heat ring of a semiconductor processing tool and/or a gapping measurement in a second dimension between the wafer and the pre-heat ring, using one or more images captured in situ during a process by at least one optical sensor. Accordingly, the control device may generate a command based on a setting associated with the process being performed by the semiconductor processing tool and the spacing measurement and/or the gapping measurement. The control device may provide the command to at least one motor to move the susceptor.
    Type: Application
    Filed: January 10, 2022
    Publication date: May 11, 2023
    Inventors: Yan-Chun LIU, Yii-Chi LIN, Shahaji B. MORE, Chih-Yu MA, Sheng-Jang LIU, Shih-Chieh CHANG, Ching-Lun LAI
  • Publication number: 20230102873
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 30, 2023
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Patent number: 11545399
    Abstract: A structure includes a stepped crystalline substrate that includes an upper step, a lower step, and a step rise. A first fin includes a crystalline structure having a first lattice constant. The first fin is formed over the lower step. A second fin includes a crystalline structure having a second lattice constant, the second lattice constant being different than the first lattice constant. The second fin can be formed over the upper step apart from the first fin. A second crystalline structure can be formed over the first crystalline structure and the tops of the fins aligned. The first and second fins can be made of the same material, but with different heights and different channel strain values. The first fin can be used as an NMOS fin and the second fin can be used as a PMOS fin of a CMOS FinFET.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Han Lee, Chih-Yu Ma, Shih-Chieh Chang
  • Patent number: 11522086
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: December 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20220359298
    Abstract: Embodiments of the present disclosure provide methods for forming merged source/drain features from two or more fin structures. The merged source/drain features according to the present disclosure have a merged portion with an increased height percentage over the overall height of the source/drain feature. The increase height percentage provides an increased landing range for source/drain contact features, therefore, reducing the connection resistance between the source/drain feature and the source/drain contact features. In some embodiments, the emerged source/drain features include one or more voids formed within the merged portion.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 10, 2022
    Inventors: Shahaji B. More, Chung-Hsien Yeh, Chih-Yu Ma
  • Publication number: 20220262681
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 11342228
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 24, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20210257496
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 19, 2021
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Patent number: 10991826
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: April 27, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Publication number: 20200365720
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee
  • Publication number: 20200350435
    Abstract: A device includes a fin extending from a substrate, a gate stack over and along sidewalls of the fin, a gate spacer along a sidewall of the gate stack, and an epitaxial source/drain region in the fin and adjacent the gate spacer. The epitaxial source/drain region includes a first epitaxial layer on the fin, the first epitaxial layer including silicon, germanium, and arsenic, and a second epitaxial layer on the first epitaxial layer, the second epitaxial layer including silicon and phosphorus, the first epitaxial layer separating the second epitaxial layer from the fin. The epitaxial source/drain region further includes a third epitaxial layer on the second epitaxial layer, the third epitaxial layer including silicon, germanium, and phosphorus.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chih-Yu Ma, Shahaji B. More, Yi-Min Huang, Shih-Chieh Chang
  • Patent number: 10734524
    Abstract: A method includes providing a substrate having a gate structure over a first side of the substrate, forming a recess adjacent to the gate structure, and forming in the recess a first semiconductor layer having a dopant, the first semiconductor layer being non-conformal, the first semiconductor layer lining the recess and extending from a bottom of the recess to a top of the recess. The method further includes forming a second semiconductor layer having the dopant in the recess and over the first semiconductor layer, a second concentration of the dopant in the second semiconductor layer being higher than a first concentration of the dopant in the first semiconductor layer.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Ma, Zheng-Yang Pan, Shahaji B. More, Shih-Chieh Chang, Cheng-Han Lee