Patents by Inventor Chikyung Won

Chikyung Won has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977395
    Abstract: Systems and methods for powering and controlling flight of an unmanned aerial vehicle are provided. The unmanned aerial vehicles can be used in a networked communication system. A tether management system can be used to facilitate both mobile and static tethered operation to provide power and/or voice and data communication.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 7, 2024
    Assignee: Teledyne FLIR Defense, Inc.
    Inventors: Bretton E. Anderson, Philip N. Lafountain, Alexey Zaparovanny, Misha Filippov, Samir S. Mistry, Chikyung Won, Kevin Michael McClure, Caroline Ekchian
  • Publication number: 20230330870
    Abstract: A soft robotic gripper having component parts capable of being assembled in the field at the terminus of an industrial robot arm for providing adaptive gripping of a product. A hub includes a pneumatic inlet leading to outlets. Finger mounts with pneumatic passages hold inflatable fingers, and tension fastener(s) secure and compress the finger mounts toward the hub by passing through the pneumatic passages and fastening under tension in a direction of the hub.
    Type: Application
    Filed: May 19, 2023
    Publication date: October 19, 2023
    Inventors: Jeffrey Curhan, Chikyung Won, Andrew George Goodale
  • Patent number: 11737632
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: August 29, 2023
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Patent number: 11691297
    Abstract: A soft robotic gripper having component parts capable of being assembled in the field at the terminus of an industrial robot arm for providing adaptive gripping of a product. A hub includes a pneumatic inlet leading to outlets. Finger mounts with pneumatic passages hold inflatable fingers, and tension fastener(s) secure and compress the finger mounts toward the hub by passing through the pneumatic passages and fastening under tension in a direction of the hub.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: July 4, 2023
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Jeffrey Curhan, Chikyung Won, Andrew George Goodale
  • Publication number: 20210370527
    Abstract: A soft robotic gripper having component parts capable of being assembled in the field at the terminus of an industrial robot arm for providing adaptive gripping of a product. A hub includes a pneumatic inlet leading to outlets. Finger mounts with pneumatic passages hold inflatable fingers, and tension fastener(s) secure and compress the finger mounts toward the hub by passing through the pneumatic passages and fastening under tension in a direction of the hub.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Jeffrey Curhan, Chikyung Won, Andrew George Goodale
  • Patent number: 11174021
    Abstract: Systems and methods are provided for powering and controlling flight of an unmanned aerial vehicle. The unmanned aerial vehicles can be used in a networked system under common control and operation and can be used for a variety of applications. Selected embodiments can operate while tethered to a portable control system. A high speed tether management system can be used to facilitate both mobile and static tethered operation. Modular components provide for both tethered and fully autonomous flight operations.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 16, 2021
    Assignee: FLIR DETECTION, INC.
    Inventors: Bretton E. Anderson, Felipe Bohorquez, Misha Filippov, Helen Greiner, Jason Jeffords, Sam Johnson, Kevin Michael Mcclure, Kim Salazar, Kenneth D. Sebesta, Andrew M. Shein, Perry Stoll, Chikyung Won, Alexey Zaparovanny
  • Patent number: 11090818
    Abstract: A soft robotic gripper having component parts capable of being assembled in the field at the terminus of an industrial robot arm for providing adaptive gripping of a product. A hub includes a pneumatic inlet leading to outlets. Finger mounts with pneumatic passages hold inflatable fingers, and tension fastener(s) secure and compress the finger mounts toward the hub by passing through the pneumatic passages and fastening under tension in a direction of the hub.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: August 17, 2021
    Assignee: SOFT ROBOTICS, INC.
    Inventors: Jeffrey Curhan, Chikyung Won, Andrew George Goodale
  • Publication number: 20210030244
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: October 16, 2020
    Publication date: February 4, 2021
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Steven Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Orrin Swett, John Devlin
  • Publication number: 20200225684
    Abstract: Systems and methods for powering and controlling flight of an unmanned aerial vehicle are provided. The unmanned aerial vehicles can be used in a networked communication system. A tether management system can be used to facilitate both mobile and static tethered operation to provide power and/or voice and data communication.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Bretton E. ANDERSON, Philip N. LAFOUNTAIN, Alexey ZAPAROVANNY, Misha FILIPPOV, Samir S. MISTRY, Chikyung WON, Kevin Michael MCCLURE, Caroline EKCHIAN
  • Publication number: 20200163518
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Steven Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Orrin Swett, John Devlin
  • Publication number: 20200163519
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Steven Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Orrin Swett, John Devlin
  • Publication number: 20200122830
    Abstract: The present invention relates to systems and methods for powering and controlling flight of an unmanned aerial vehicle. The unmanned aerial vehicles can be used in a networked system under common control and operation and can be used for a variety of applications. Selected embodiments can operate while tethered to a portable control station. A high speed tether management system can be used to facilitate both mobile and static tethered operation. Modular components provide for both tethered and fully autonomous flight operations.
    Type: Application
    Filed: March 24, 2017
    Publication date: April 23, 2020
    Inventors: Bretton E. Anderson, Felipe Bohorquez, Misha Filippov, Helen Greiner, Jason Jeffords, Sam Johnson, Kevin Michael Mcclure, Kim Salazar, Kenneth D. Sebesta, Andrew M. Shein, Perry Stoll, Chikyung Won, Alexey Zaparovanny
  • Publication number: 20200121152
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Patent number: 10524629
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: January 7, 2020
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Publication number: 20190365187
    Abstract: A cleaning robot system including a robot and a robot maintenance station. The robot includes a robot body, a drive system, a cleaning assembly, and a cleaning bin carried by the robot body and configured to receive debris agitated by the cleaning assembly. The robot maintenance station includes a station housing configured to receive the robot for maintenance. The station housing has an evacuation passageway exposed to a top portion of the received robot. The robot maintenance station also includes an air mover in pneumatic communication with the evacuation passageway and a collection bin carried by the station housing and in pneumatic communication with the evacuation passageway. The station housing and the robot body fluidly connect the evacuation passageway to the cleaning bin of the received robot. The air mover evacuates debris held in the robot cleaning bin to the collection bin through the evacuation passageway.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Steven Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Orrin Swett, John Devlin
  • Publication number: 20190299424
    Abstract: A soft robotic gripper having component parts capable of being assembled in the field at the terminus of an industrial robot arm for providing adaptive gripping of a product. A hub includes a pneumatic inlet leading to outlets. Finger mounts with pneumatic passages hold inflatable fingers, and tension fastener(s) secure and compress the finger mounts toward the hub by passing through the pneumatic passages and fastening under tension in a direction of the hub.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 3, 2019
    Inventors: Jeffrey Curhan, Chikyung Won, Andrew George Goodale
  • Patent number: 10070763
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 11, 2018
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin
  • Patent number: 9955841
    Abstract: A cleaning robot system includes a robot and a robot maintenance station. The robot includes a chassis, a drive system configured to maneuver the robot as directed by a controller, and a cleaning assembly including a cleaning assembly housing and a driven cleaning roller. The robot maintenance station includes a station housing and a docking platform configured to support the robot when docked. A mechanical agitator engages the roller of the robot with the robot docked. The agitator includes an agitator comb having multiple teeth configured to remove accumulated debris from the roller as the agitator comb and roller are moved relative to one another. The robot maintenance station includes a collection bin arranged to receive and hold debris removed by the mechanical agitator.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: May 1, 2018
    Assignee: iRobot Corporation
    Inventors: Chikyung Won, Stephen A. Hickey, Mark Steven Schnittman, Zivthan A. Dubrovsky, Selma Svendsen, Jed Lowry, David Swett, John Devlin
  • Patent number: 9902069
    Abstract: A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: February 27, 2018
    Assignee: iRobot Corporation
    Inventors: Timothy S. Farlow, Michael T. Rosenstein, Michael Halloran, Chikyung Won, Steven V. Shamlian, Mark Chiappetta
  • Publication number: 20170215666
    Abstract: A coverage robot including a chassis, multiple drive wheel assemblies disposed on the chassis, and a cleaning assembly carried by the chassis. Each drive wheel assembly including a drive wheel assembly housing, a wheel rotatably coupled to the housing, and a wheel drive motor carried by the drive wheel assembly housing and operable to drive the wheel. The cleaning assembly including a cleaning assembly housing, a cleaning head rotatably coupled to the cleaning assembly housing, and a cleaning drive motor carried by cleaning assembly housing and operable to drive the cleaning head. The wheel assemblies and the cleaning assembly are each separately and independently removable from respective receptacles of the chassis as complete units.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventors: Chikyung Won, Scott Thomas Burnett, Stephen A. Hickey, Deepak Ramesh Kapoor, Zivthan A. Dubrovsky, Selma Svendsen, Robert Rizzari, Paul E. Sandin