Patents by Inventor Ching-Han LI

Ching-Han LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948837
    Abstract: A method for making a semiconductor structure includes: providing a substrate with a contact feature thereon; forming a dielectric layer on the substrate; etching the dielectric layer to form an interconnect opening exposing the contact feature; forming a metal layer on the dielectric layer and outside of the contact feature; and forming a graphene conductive structure on the metal layer, the graphene conductive structure filling the interconnect opening, being electrically connected to the contact feature, and having at least one graphene layer that extends in a direction substantially perpendicular to the substrate.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ching-Fu Yeh, Chin-Lung Chung, Shu-Wei Li, Yu-Chen Chan, Shin-Yi Yang, Ming-Han Lee
  • Patent number: 10312701
    Abstract: A charging method of a portable electronic device, adapted to charge a battery module of a portable electronic device, the charging method comprising detecting a battery voltage and a charging current of the battery module; determining whether the portable electronic device operates at a constant current mode according to the battery voltage; entering an over voltage protection charging loop while the portable electronic device operates at the constant current mode and allows the battery module to be charged up at a maximum charging voltage, and leaving the over voltage protection charging loop while the charging current is smaller than a predetermined current, wherein the maximum charging voltage is gradually decreased according to a comparison result between the battery voltage and an overcharging protection voltage; and setting the maximum charging voltage as a full charge voltage while leaving the over voltage protection charging loop.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: June 4, 2019
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Ching-Han Li, Hsiang-Jui Hung, Wei-Chen Tu, Ming-Ting Tsai
  • Patent number: 9837836
    Abstract: A charging method and a portable electronic device using the same are provided. The charging method includes following steps: detecting a battery voltage and a charging current of a battery module; determining whether the portable electronic device operates at a constant voltage (CV) charging mode; executing an impedance calculation at the CV charging mode to obtain a first battery voltage corresponding to a first predetermined current and a second battery voltage corresponding to a second predetermined current; calculating a compensation impedance according to the predetermined current and the battery voltages; setting a maximum charging voltage according to the compensation impedance and executing a CV charging to the battery module accordingly; determining whether a current variation of the charging current is larger than a threshold value; re-executing the impedance calculation; updating a setting value of the maximum charging voltage when the current variation is larger than the threshold value.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: December 5, 2017
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Ching-Han Li, Hsiang-Jui Hung, Wei-Chen Tu, Ming-Ting Tsai
  • Patent number: 9652012
    Abstract: An electronic device and a power supplying method thereof are provided. An electronic device includes a host and a power supply. The host receives a power via a power supply path. The power is transmitted to the host via the power supply path. The power supply detects state changes of a plurality of supply current values at the power supply path obtained by the host from the power supply at a plurality of time intervals, so as to generate a determining result. A voltage value of the power is changed according to the determining result.
    Type: Grant
    Filed: April 12, 2015
    Date of Patent: May 16, 2017
    Assignee: ASUSTeK COMPUTER INC.
    Inventors: Ming-Ting Tsai, Ching-Han Li, Hsiang-Jui Hung
  • Publication number: 20160218542
    Abstract: A charging method and a portable electronic device using the same are provided. The charging method includes following steps: detecting a battery voltage and a charging current of a battery module; determining whether the portable electronic device operates at a constant voltage (CV) charging mode; executing an impedance calculation at the CV charging mode to obtain a first battery voltage corresponding to a first predetermined current and a second battery voltage corresponding to a second predetermined current; calculating a compensation impedance according to the predetermined current and the battery voltages; setting a maximum charging voltage according to the compensation impedance and executing a CV charging to the battery module accordingly; determining whether a current variation of the charging current is larger than a threshold value; re-executing the impedance calculation; updating a setting value of the maximum charging voltage when the current variation is larger than the threshold value.
    Type: Application
    Filed: June 26, 2015
    Publication date: July 28, 2016
    Inventors: Ching-Han Li, Hsiang-Jui Hung, Wei-Chen Tu, Ming-Ting Tsai
  • Publication number: 20160218531
    Abstract: A charging method of a portable electronic device, adapted to charge a battery module of a portable electronic device, the charging method comprising detecting a battery voltage and a charging current of the battery module; determining whether the portable electronic device operates at a constant current mode according to the battery voltage; entering an over voltage protection charging loop while the portable electronic device operates at the constant current mode and allows the battery module to be charged up at a maximum charging voltage, and leaving the over voltage protection charging loop while the charging current is smaller than a predetermined current, wherein the maximum charging voltage is gradually decreased according to a comparison result between the battery voltage and an overcharging protection voltage; and setting the maximum charging voltage as a full charge voltage while leaving the over voltage protection charging loop.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Inventors: Ching-Han Li, Hsiang-Jui Hung, Wei-Chen Tu, Ming-Ting Tsai
  • Publication number: 20160004285
    Abstract: An electronic device and a power supplying method thereof are provided. An electronic device includes a host and a power supply. The host receives a power via a power supply path. The power is transmitted to the host via the power supply path. The power supply detects state changes of a plurality of supply current values at the power supply path obtained by the host from the power supply at a plurality of time intervals, so as to generate a determining result. A voltage value of the power is changed according to the determining result.
    Type: Application
    Filed: April 12, 2015
    Publication date: January 7, 2016
    Inventors: Ming-Ting Tsai, Ching-Han Li, Hsiang-Jui Hung
  • Publication number: 20150015227
    Abstract: A boost converter and a drive control module thereof are provided. The boost converter includes a inductor, a power switch, a PWM control circuit and the drive control module. The inductor is coupled between the input terminal and the output terminal. The power switch is coupled between a inductor and a ground end. The PWM control circuit is provided to provide the PWM control signal to the gate of the power switch to control the conducting state of the power switch, and the conversion output voltage at the second end. Based on the current load state of the boost converter in operation, the drive control module outputs the gate electronic potential signal to the PWM control circuit according to the input voltage or the conversion output voltage, and the PWM control circuit adjusts the voltage amplitude of the PWM control signal correspondingly.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 15, 2015
    Inventors: Ching-Han LI, Chih-Wan HSU, Hsi-Ho HSU, Cheng-Yu TSAI