Patents by Inventor Ching-Wen Hung

Ching-Wen Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210391339
    Abstract: A method for fabricating a static random access memory (SRAM) includes the steps of: forming a gate structure on a substrate; forming an epitaxial layer adjacent to the gate structure; forming a first interlayer dielectric (ILD) layer around the gate structure; transforming the gate structure into a metal gate; forming a contact hole exposing the epitaxial layer, forming a barrier layer in the contact hole, forming a metal layer on the barrier layer, and then planarizing the metal layer and the barrier layer to form a contact plug. Preferably, a bottom portion of the barrier layer includes a titanium rich portion and a top portion of the barrier layer includes a nitrogen rich portion.
    Type: Application
    Filed: July 8, 2020
    Publication date: December 16, 2021
    Inventors: Ching-Wen Hung, Chun-Hsien Lin, Chien-Hung Chen
  • Publication number: 20210249275
    Abstract: A semiconductor device structure and a manufacturing method thereof are provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 12, 2021
    Inventor: Ching-Wen Hung
  • Patent number: 11037796
    Abstract: A manufacturing method of a semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 15, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Publication number: 20210020832
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a magnetic tunnel junction (MTJ) region and an edge region, forming an first inter-metal dielectric (IMD) layer on the substrate, and then forming a first MTJ and a second MTJ on the first IMD layer, in which the first MTJ is disposed on the MTJ region while the second MTJ is disposed on the edge region. Next, a second IMD layer is formed on the first MTJ and the second MTJ.
    Type: Application
    Filed: October 7, 2020
    Publication date: January 21, 2021
    Inventors: Ching-Wen Hung, Yu-Ping Wang
  • Patent number: 10840437
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a magnetic tunnel junction (MTJ) region and an edge region, forming an first inter-metal dielectric (IMD) layer on the substrate, and then forming a first MTJ and a second MTJ on the first IMD layer, in which the first MTJ is disposed on the MTJ region while the second MTJ is disposed on the edge region. Next, a second IMD layer is formed on the first MTJ and the second MTJ.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: November 17, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Yu-Ping Wang
  • Patent number: 10763357
    Abstract: A semiconductor device includes a substrate, a first dielectric layer on the substrate, a hard mask layer on the first dielectric layer, a trench in the hard mask layer and the first dielectric layer, a first source/drain electrode layer on a sidewall of the trench, a second dielectric layer on the first source/drain electrode layer in the trench, a second source/drain electrode layer on the second dielectric layer in the trench, a third dielectric layer on the second source/drain electrode layer in the trench, an ILD layer overlying the trench, an nFET disposed over the trench, and a pFET disposed over the trench and spaced apart from the nFET.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: September 1, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Publication number: 20200227550
    Abstract: A semiconductor device includes a substrate, a first dielectric layer on the substrate, a hard mask layer on the first dielectric layer, a trench in the hard mask layer and the first dielectric layer, a first source/drain electrode layer on a sidewall of the trench, a second dielectric layer on the first source/drain electrode layer in the trench, a second source/drain electrode layer on the second dielectric layer in the trench, a third dielectric layer on the second source/drain electrode layer in the trench, an ILD layer overlying the trench, an nFET disposed over the trench, and a pFET disposed over the trench and spaced apart from the nFET.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventor: Ching-Wen Hung
  • Publication number: 20200136015
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a metal interconnection in the first IMD layer; forming a bottom electrode layer and a pinned layer on the first IMD layer; forming a sacrificial layer on the pinned layer; patterning the sacrificial layer, the pinned layer, and the bottom electrode layer to form a first magnetic tunneling junction (MTJ); forming a second IMD layer around the first MTJ; and removing the sacrificial layer.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 30, 2020
    Inventors: Ching-Wen Hung, Ya-Sheng Feng
  • Patent number: 10636903
    Abstract: A semiconductor device includes a first dielectric layer on a substrate, a hard mask layer on the first dielectric layer, a trench in the hard mask layer and the first dielectric layer, a first source/drain electrode layer on a sidewall of the trench, a second dielectric layer on the first source/drain electrode layer in the trench, a second source/drain electrode layer on the second dielectric layer in the trench, a third dielectric layer on the second source/drain electrode layer in the trench, a 2D material layer overlying the hard mask layer, the first source/drain electrode layer, the second dielectric layer, the second source/drain electrode layer, and the third dielectric layer, a gate dielectric layer on the 2D material layer, and a gate electrode on the gate dielectric layer.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: April 28, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Patent number: 10608045
    Abstract: A semiconductor device and method of forming the same, the semiconductor device includes a substrate, first plug, a magnetoresistive random access memory (MRAM) structure, a spacer layer, a seal layer and a first conductive pattern. The substrate has a first region and a second region, and the first plug is disposed on a dielectric layer disposed on the substrate, within the first region. The MRAM structure is disposed in the dielectric layer and electrically connected to the first plug. The spacer layer is disposed both within the first region and the second region, to cover the MRAM structure. The seal layer is disposed on the MRAM structure and the first plug, only within the first region. The first conductive pattern penetrates through the seal layer to electrically connect the MRAM structure.
    Type: Grant
    Filed: March 10, 2019
    Date of Patent: March 31, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Yu-Ping Wang
  • Publication number: 20200098584
    Abstract: A manufacturing method of a semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventor: Ching-Wen Hung
  • Patent number: 10600882
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes a substrate, and an interlayer dielectric disposed on the substrate which has agate structure therein. The gate structure further includes a gate electrode with a protruding portion, and a gate dielectric layer disposed between the gate electrode and the substrate. A spacer is disposed between the interlayer dielectric and the gate electrode. An insulating cap layer is disposed atop the gate electrode and encompasses the top and the sidewall of the protruding portion.
    Type: Grant
    Filed: October 11, 2015
    Date of Patent: March 24, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Chih-Sen Huang, Yi-Wei Chen, Chun-Hsien Lin
  • Patent number: 10553576
    Abstract: A method for filling patterns includes the steps of: providing a substrate having a cell region defined thereon; forming main patterns on the substrate and within the cell region; and filling first dummy patterns adjacent to the main patterns. Preferably, each of the first dummy patterns comprises a first length along X-direction between 2 ?m to 5 ?m and a second length along Y-direction between 3 ?m to 5 ?m.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: February 4, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Chih-Sen Huang, Yi-Wei Chen
  • Patent number: 10535817
    Abstract: A method of manufacturing an embedded magnetoresistive random access memory including the following steps is provided. A memory cell stack structure is formed on a substrate structure. The memory cell stack structure includes a first electrode, a second electrode, and a magnetic tunnel junction structure. A first dielectric layer covering the memory cell stack structure is formed. A metal nitride layer is formed on the first dielectric layer. A second dielectric layer is formed on the metal nitride layer. A first CMP process is performed on the second dielectric layer to expose the metal nitride layer by using the metal nitride layer as a stop layer. An etch back process is performed to completely remove the metal nitride layer and expose the first dielectric layer. A second CMP process is performed to expose the second electrode. The manufacturing method can have a better planarization effect.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: January 14, 2020
    Assignee: United Microelectronics Corp.
    Inventors: Ching-Wen Hung, Kun-Ju Li
  • Patent number: 10529837
    Abstract: A bipolar junction transistor (BJT) includes an emitter region, abase region on one side of the emitter region, and a collector region on the other side of the base region. The emitter region includes first fins extending along a first direction, a first metal gate extending across the first fins along a second direction, a second metal gate in parallel with the first metal gate, and an emitter contact plug on the first fins between the first metal gate and the second metal gate. The base region includes second fins extending along the first direction, the first metal gate and the second metal gate extending across the second fins along the second direction, and a base contact plug on the second fins between the first metal gate and the second metal gate. The emitter contact plug is aligned with the base contact plug.
    Type: Grant
    Filed: September 2, 2018
    Date of Patent: January 7, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Meng-Chi Chiang, Yen-Chih Lin
  • Patent number: 10529580
    Abstract: A semiconductor device structure and a manufacturing method thereof are provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 7, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Patent number: 10510884
    Abstract: A method for fabricating a semiconductor device is disclosed. A dummy gate is formed on a semiconductor substrate. The dummy gate has a first sidewall and a second sidewall opposite to the first sidewall. A low-k dielectric layer is formed on the first sidewall of the dummy gate and the semiconductor substrate. A spacer material layer is deposited on the low-k dielectric layer, the second sidewall of the dummy gate, and the semiconductor substrate. The spacer material layer and the low-k dielectric layer are etched to form a first spacer structure on the first sidewall and a second spacer structure on the second sidewall. A drain doping region is formed in the semiconductor substrate adjacent to the first spacer structure. A source doping region is formed in the semiconductor substrate adjacent to the second spacer structure.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: December 17, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Chun-Hsien Lin
  • Publication number: 20190341544
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a magnetic tunnel junction (MTJ) region and an edge region, forming an first inter-metal dielectric (IMD) layer on the substrate, and then forming a first MTJ and a second MTJ on the first IMD layer, in which the first MTJ is disposed on the MTJ region while the second MTJ is disposed on the edge region. Next, a second IMD layer is formed on the first MTJ and the second MTJ.
    Type: Application
    Filed: June 4, 2018
    Publication date: November 7, 2019
    Inventors: Ching-Wen Hung, Yu-Ping Wang
  • Patent number: 10446745
    Abstract: A method of manufacturing a magnetoresistive random access memory cell includes the following steps. A first dielectric layer including a first metal line therein is formed on a substrate. A patterned second dielectric layer is formed over the first dielectric layer, wherein the patterned second dielectric layer includes a recess exposing the first metal line. A barrier layer conformally covers the recess and the patterned second dielectric layer. A metal fills up the recess and on the barrier layer. The metal is planarized until the barrier layer being exposed by serving the barrier layer as a stop layer. A magnetic tunneling junction and a top electrode over the metal are formed, thereby a magnetoresistive random access memory cell being formed.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: October 15, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Wen Hung, Kun-Ju Li
  • Publication number: 20190273117
    Abstract: A semiconductor device and method of forming the same, the semiconductor device includes a substrate, first plug, a magnetoresistive random access memory (MRAM) structure, a spacer layer, a seal layer and a first conductive pattern. The substrate has a first region and a second region, and the first plug is disposed on a dielectric layer disposed on the substrate, within the first region. The MRAM structure is disposed in the dielectric layer and electrically connected to the first plug. The spacer layer is disposed both within the first region and the second region, to cover the MRAM structure. The seal layer is disposed on the MRAM structure and the first plug, only within the first region. The first conductive pattern penetrates through the seal layer to electrically connect the MRAM structure.
    Type: Application
    Filed: March 10, 2019
    Publication date: September 5, 2019
    Inventors: Ching-Wen Hung, Yu-Ping Wang