Patents by Inventor Ching-yuh Tsay

Ching-yuh Tsay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10191505
    Abstract: A sensor device comprises a sensor element for measuring a stimulus and generating a corresponding signal, an ADC for convert the signal to a multi-bit digital signal, a memory unit for storing the digital signal, and a timing unit for switching off the sensor element when the ADC is converting the signal and for switching off the ADC after the digital signal is stored in the memory.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: January 29, 2019
    Assignee: Diodes Incorporated
    Inventors: Wen-Chia Yang, Khagendra Thapa, Ying-Tang Cho, Ching-Yuh Tsay, Richard Robinson
  • Publication number: 20160132066
    Abstract: A sensor device comprises a sensor element for measuring a stimulus and generating a corresponding signal, an ADC for convert the signal to a multi-bit digital signal, a memory unit for storing the digital signal, and a timing unit for switching off the sensor element when the ADC is converting the signal and for switching off the ADC after the digital signal is stored in the memory.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 12, 2016
    Applicant: Diodes Incorporated
    Inventors: Wen-Chia Yang, Khagendra Thapa, Ying-Tang Cho, Ching-Yuh Tsay, Richard Robinson
  • Patent number: 9252690
    Abstract: Some embodiments provide a system that generates a coil switching signal for a brushless DC motor. During operation, the system determines a magnetic field of the brushless DC motor at a first time and a magnetic field of the brushless DC motor at a second time. Then, the coil switching signal is generated based on a relationship between the magnetic field determined at the first time and a first predetermined threshold, and the magnetic field determined at the second time and a second predetermined threshold.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: February 2, 2016
    Assignee: Diodes Incorported
    Inventors: Ching-Yuh Tsay, Chuan Hung Chi
  • Publication number: 20140320053
    Abstract: Some embodiments provide a system that generates a coil switching signal for a brushless DC motor. During operation, the system determines a magnetic field of the brushless DC motor at a first time and a magnetic field of the brushless DC motor at a second time. Then, the coil switching signal is generated based on a relationship between the magnetic field determined at the first time and a first predetermined threshold, and the magnetic field determined at the second time and a second predetermined threshold.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 30, 2014
    Inventors: Ching-Yuh Tsay, Chuan Hung Chi
  • Patent number: 8810174
    Abstract: Some embodiments provide a system that generates a coil switching signal for a brushless DC motor. During operation, the system determines a magnetic field of the brushless DC motor at a first time and a magnetic field of the brushless DC motor at a second time. Then, the coil switching signal is generated based on a relationship between the magnetic field determined at the first time and a first predetermined threshold, and the magnetic field determined at the second time and a second predetermined threshold.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 19, 2014
    Assignee: Diodes Incorporated
    Inventors: Ching-Yuh Tsay, Chuan Hung Chi
  • Publication number: 20120169261
    Abstract: Some embodiments provide a system that generates a coil switching signal for a brushless DC motor. During operation, the system determines a magnetic field of the brushless DC motor at a first time and a magnetic field of the brushless DC motor at a second time. Then, the coil switching signal is generated based on a relationship between the magnetic field determined at the first time and a first predetermined threshold, and the magnetic field determined at the second time and a second predetermined threshold.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 5, 2012
    Applicant: DIODES INCORPORATED
    Inventors: Ching-Yuh Tsay, Chuan Hung Chi
  • Patent number: 8044646
    Abstract: Various apparatuses, methods and systems for a voltage regulator are disclosed herein. For example, some embodiments provide an apparatus for regulating a voltage including an N-channel transistor that is connected between an input and an output, an error amplifier that is connected to the output, a capacitor that is connected between the error amplifier and a gate of the N-channel transistor, and a comparator that is connected to a node between the error amplifier and the capacitor. The apparatus also includes a charge pump that is switchably connected to the gate of the N-channel transistor. The apparatus is adapted to connect the charge pump to the gate of the N-channel transistor when a voltage at the node between the error amplifier and the capacitor rises above a threshold voltage.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: October 25, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Erhan Ozalevli, Luthuli E. Dake, Gregory Romas, Ching-yuh Tsay
  • Publication number: 20100259235
    Abstract: Various apparatuses, methods and systems for a voltage regulator are disclosed herein. For example, some embodiments provide an apparatus for regulating a voltage including an N-channel transistor that is connected between an input and an output, an error amplifier that is connected to the output, a capacitor that is connected between the error amplifier and a gate of the N-channel transistor, and a comparator that is connected to a node between the error amplifier and the capacitor. The apparatus also includes a charge pump that is switchably connected to the gate of the N-channel transistor. The apparatus is adapted to connect the charge pump to the gate of the N-channel transistor when a voltage at the node between the error amplifier and the capacitor rises above a threshold voltage.
    Type: Application
    Filed: April 10, 2009
    Publication date: October 14, 2010
    Inventors: Erhan Ozalevli, Luthuli E. Dake, Gregory Romas, Ching-yuh Tsay
  • Patent number: 6940342
    Abstract: A programmable gain amplifier using metal-oxide-semiconductor (MOS) devices to approximate exponential gain characteristic with linear control signals is disclosed. According to one embodiment, the programmable gain amplifier (300a-300b) may include a capacitive switching circuit (304a-304b), a capacitive switching circuit (306a-306b), and an operational amplifier (302a-302b). Capacitive switching circuits (304a-304b and 306a-306b) may receive an analog input voltage through sample switches (308a-308b and 310a-310b). Capacitive switching circuit (304a-304b) receives an output from operational amplifier (302a-302b) through feedback switch (312a-312b). The programmable gain amplifier (300a-300b) may include a few additional unit capacitors which can allow larger gain ranges or more steps for a given range without a large increase in chip size.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: September 6, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: M. C. Ramesh, Feng Ying, Haydar Bilhan, Gary Lee, Yong Han, Ching-Yuh Tsay
  • Patent number: 6804697
    Abstract: An averaging circuit includes: input signal nodes for providing input signals 330; a multiplexing circuit 320 coupled to the input signal nodes for switching between the input signals 330 to create a time waveform; a low pass filter 300 coupled to an output 340 of the multiplexing circuit 320 for filtering the time waveform to create an average signal; and an average replication circuit 310 coupled to an output 350 of the low pass filter 300.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: October 12, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Alexander Bugeja, Ching-yuh Tsay, Irfan A. Chaudhry, Mounir Fares
  • Patent number: 6753913
    Abstract: An image processing apparatus for charge coupled device (CCD) and video inputs in a digital camera or for a digital camcorder is disclosed which provides optical black and offset correction for CCD inputs. A sampling circuit, including correlated double sampler (CDS) (402) and programmable gain amplifier (450), samples the image input signal and the video input signal. CDS (402) includes a single-ended amplifier (404) and a differential amplifier (406). The single-ended amplifier (404) functions such that it is only operable during an CCD signal input; otherwise, the single-ended amplifier (404) is bypassed such that a video signal is only sampled by the differential amplifier (406). For CCD signals, the single-ended amplifier (404) samples the reference level of the pixel and holds it during the video interval. The differential amplifier (404) samples both the output of the single ended amplifier (404) and the video level of the same pixel.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: June 22, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Haydar Bilhan, Gary E. Lee, Ramesh Chandrasekaran, Feng Ying, Ching-Yuh Tsay, Xucheng Wang
  • Publication number: 20030201824
    Abstract: A programmable gain amplifier using metal-oxide-semiconductor (MOS) devices to approximate exponential gain characteristic with linear control signals is disclosed. According to one embodiment, the programmable gain amplifier (300a-300b) may include a capacitive switching circuit (304a-304b), a capacitive switching circuit (306a-306b), and an operational amplifier (302a-302b). Capacitive switching circuits (304a-304b and 306a-306b) may receive an analog input voltage through sample switches (308a-308b and 310a-310b). Capacitive switching circuit (304a-304b) receives an output from operational amplifier (302a-302b) through feedback switch (312a-312b). The programmable gain amplifier (300a-300b) may include a few additional unit capacitors which can allow larger gain ranges or more steps for a given range without a large increase in chip size.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 30, 2003
    Inventors: M.C. Ramesh, Feng Ying, Haydar Bilhan, Gary Lee, Yong Han, Ching-Yuh Tsay
  • Patent number: 6628164
    Abstract: A programmable gain amplifier using metal-oxide-semiconductor (MOS) devices to approximate exponential gain characteristic with linear control signals is disclosed. According to one embodiment, the programmable gain amplifier (300a-300b) may include a capacitive switching circuit (304a-304b), a capacitive switching circuit (306a-306b), and an operational amplifier (302a-302b). Capacitive switching circuits (304a-304b and 306a-306b) may receive an analog input voltage through sample switches (308a-308b and 310a-310b). Capacitive switching circuit (304a-304b) receives an output from operational amplifier (302a-302b) through feedback switch (312a-312b). The programmable gain amplifier (300a-300b) may include a few additional unit capacitors which can allow larger gain ranges or more steps for a given range without a large increase in chip size.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: September 30, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: M. C. Ramesh, Feng Ying, Haydar Bilhan, Gary Lee, Yong Han, Ching-Yuh Tsay
  • Patent number: 6529237
    Abstract: A correlated double sampled/programmable gain amplifier (CDS/PGA) is disclosed which is operable to precondition a CCD output analog signal. The CDS/PGA includes an operational amplifier that is configured in a sample hold operation. The single-ended input is first clamped by a switch (34) to clamp the DC level therein for a given pixel. A switch (38) then samples the reset level onto a sampling capacitor (46), and a switch (42) thereafter samples the video signal onto one plate of a capacitor (50). The lower plates of the capacitors (46) and (50) are then equalized and the other plates thereof connected to the positive and negative inputs of the operational amplifier (68). An offset is provided by a programmable DAC (26) to account for the dark current offset. The output scale is adjusted or mapped by limiting the output between a negative and a positive reference input. The sampling capacitors (46) and (50) can be varied to vary the gain of the amplifier.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: March 4, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Ching-yuh Tsay, Arash Loloee, Eric G. Soenen
  • Publication number: 20020190788
    Abstract: A programmable gain amplifier using metal-oxide-semiconductor (MOS) devices to approximate exponential gain characteristic with linear control signals is disclosed. According to one embodiment, the programmable gain amplifier (300a-300b) may include a capacitive switching circuit (304a-304b), a capacitive switching circuit (306a-306b), and an operational amplifier (302a-302b). Capacitive switching circuits (304a-304b and 306a-306b) may receive an analog input voltage through sample switches (308a-308b and 310a-310b). Capacitive switching circuit (304a-304b) receives an output from operational amplifier (302a-302b) through feedback switch (312a-312b). The programmable gain amplifier (300a-300b) may include a few additional unit capacitors which can allow larger gain ranges or more steps for a given range without a large increase in chip size.
    Type: Application
    Filed: April 16, 2002
    Publication date: December 19, 2002
    Inventors: M. C. Ramesh, Feng Ying, Haydar Bilhan, Gary Lee, Yong Han, Ching-Yuh Tsay
  • Patent number: 6486711
    Abstract: A CMOS programmable gain amplifier (10) is disclosed which provides exponential gain using a single gain element (19) which may be implemented in either bipolar or CMOS technology. An embodiment of the present invention includes a first and second sampling impedance (12, 14), a first and second feedback impedance (16, 18) and a gain element (19). The gain element (19) having an inverting input, a non-inverting input and an output. The inverting input connects to the first sampling impedance (12). The non-inverting input connects to the second sampling impedance (14). The first feedback impedance (16) connects between the inverting input and the output. The second feedback impedance (18) connects between the non-inverting input and the output.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: November 26, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Ching-Yuh Tsay, Haydar Bilhan, Gary Lee
  • Patent number: 6424283
    Abstract: A segmented digital-to-analog converter includes: upper segments 200, 210, and 220; a thermometer decoder 400; a randomizing circuit 410 coupled between the thermometer decoder 400 and the upper segments 200, 210, and 220 for randomizing an output of the thermometer decoder 400; a divider location selector circuit 420 coupled between the randomizing circuit 410 and the upper segments 200, 210, and 220 for choosing a selected segment from the upper segments 200, 210, and 220; and lower segments 225 coupled to the selected segment.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: July 23, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Alexander Bugeja, Ching-yuh Tsay, Irfan A. Chaudhry, Mounir Fares
  • Publication number: 20020026469
    Abstract: An averaging circuit includes: input signal nodes for providing input signals 330; a multiplexing circuit 320 coupled to the input signal nodes for switching between the input signals 330 to create a time waveform; a low pass filter 300 coupled to an output 340 of the multiplexing circuit 320 for filtering the time waveform to create an average signal; and an average replication circuit 310 coupled to an output 350 of the low pass filter 300.
    Type: Application
    Filed: July 13, 2001
    Publication date: February 28, 2002
    Inventors: Alexander Bugeja, Ching-yuh Tsay, Irfan A. Chaudhry, Mounir Fares
  • Publication number: 20020008651
    Abstract: A segmented digital-to-analog converter includes: upper segments 200, 210, and 220; a thermometer decoder 400; a randomizing circuit 410 coupled between the thermometer decoder 400 and the upper segments 200, 210, and 220 for randomizing an output of the thermometer decoder 400; a divider location selector circuit 420 coupled between the randomizing circuit 410 and the upper segments 200, 210, and 220 for choosing a selected segment from the upper segments 200, 210, and 220; and lower segments 225 coupled to the selected segment.
    Type: Application
    Filed: July 13, 2001
    Publication date: January 24, 2002
    Inventors: Alexander Bugeja, Ching-yuh Tsay, Irfan A. Chaudhry, Mounir Fares
  • Patent number: 6239650
    Abstract: A plurality of substrate bias circuits (14, 16, and 18) are designed to provide a stable substrate reference potential for a variety of operating modes. Only one of the bias circuits is enabled by a control circuit (12) at any time for any operational mode. An on-demand boost bias circuit (16) is enabled whenever a level detector (20) indicates substrate bias has exceeded a predetermined limit during special operating modes such as burn-in or parallel test.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 29, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Ching-Yuh Tsay, Hugh P. McAdams, Wah Kit Loh