Patents by Inventor Chongjin Xie

Chongjin Xie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9525493
    Abstract: A method comprising, receiving digital-electrical input symbols of a stream of input symbols, the input symbols corresponding to signal points of a symbol constellation. The method also comprises classifying the input symbols, wherein a first symbol class comprises input symbols corresponding to signal points that are variant to rotation of the symbol constellation, and, a second symbol class comprises input symbols corresponding to signal points that are invariant to rotation of the symbol constellation. The method also comprises applying selective differential coding only to those input symbols of the first symbol class.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 20, 2016
    Assignee: Alcatel Lucent
    Inventor: Chongjin Xie
  • Publication number: 20160285559
    Abstract: An apparatus includes an optical transmitter configured to provide an optical signal amplitude-modulated among M different levels. A constellation control module is configured to provide a drive signal to control the optical signal. A feedback module is configured to receive a measure of spacing between amplitude peaks of a symbol constellation of the optical signal. The feedback module is further configured to regulate the constellation control module to adjust the optical signal in response to the measure of spacing.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Applicant: Alcatel Lucent
    Inventors: Chongjin Xie, Po Dong, Peter J. Winzer
  • Publication number: 20160241333
    Abstract: A method and device for detecting shared risk link groups is disclosed. The method comprises injecting a probe beam, respectively, into a first test link and a second test link. The method further includes recording, respectively, a first curve of a time-varying first power corresponding to the first backlight and a second curve of a time-varying second power corresponding to the second backlight; calculating a resemblance value for the first curve and the second curve; and judging, based on the resemblance value, whether the first test link and the second test link are located in the same shared risk link group. The method and device for detecting shared risk link groups provided by embodiments of the present invention detect by testing a power characteristic of backlight of a probe beam in test links and, based on that one-dimensional power characteristic, judge whether the test links are in the same shared risk link group, which are simpler in application than those in the prior art.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 18, 2016
    Inventors: Xiuzhong CHEN, Chongjin XIE, Junying PANG
  • Publication number: 20160204894
    Abstract: We disclose an optical transport system configured to transport data using a PDM-modulation format, in which each of two orthogonal polarizations is independently amplitude-modulated, and the relative phase between the carrier waves of the two polarizations may also be modulated. This modulation format enables the optical receiver to perform direct optical detection using a Stokes-vector detector to fully recover the encoded data.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 14, 2016
    Inventors: Po Dong, Chongjin Xie, Young-Kai Chen
  • Patent number: 9374167
    Abstract: An apparatus includes an optical transmitter configured to provide an optical signal amplitude-modulated among M different levels. A constellation control module is configured to provide a drive signal to control the optical signal. A feedback module is configured to receive a measure of spacing between amplitude peaks of a symbol constellation of the optical signal. The feedback module is further configured to regulate the constellation control module to adjust the optical signal in response to the measure of spacing.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 21, 2016
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Po Dong, Peter Winzer
  • Patent number: 9374188
    Abstract: A WDM system having at least two channels, each of which employs two polarizations, is arranged so that the start times of symbols carried by one polarization of a channel are displaced in time from the start times of symbols carried by the other polarization of that channel, e.g., the start time for each symbol on one polarization is not substantially synchronized with the closest-in-time symbol start time on the other polarization of that channel. Preferably, the data signals are modulated using a return-to-zero (RZ) format and the start times of the symbols of the data signal carried by one polarization of a channel is offset from the start time of the symbols data signal carried by the other polarization of that channel by between 20% to 80%—preferably 50%—of the symbol period of the data signals, when the data signals have the same symbol period.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 21, 2016
    Assignee: Alcatel Lucent
    Inventors: René-Jean Essiambre, Stefan Weisser, Peter J. Winzer, Chongjin Xie
  • Patent number: 9319147
    Abstract: We disclose an optical receiver that can receive PDM-QDB and PDM-QPSK signals without hardware changes. In an example embodiment, the optical receiver includes a MIMO equalizer configured to perform electronic polarization de-multiplexing and ISI compensation. The constant modulus algorithm that controls the configuration of the MIMO equalizer also causes the MIMO equalizer to output signal samples corresponding to the QPSK modulation format regardless of whether the received optical signal is QDB-modulated or QPSK-modulated. A QPSK-to-QDB constellation converter processes the signal samples generated by the MIMO equalizer to convert them into the QDB modulation format. A QDB decoder coupled to the constellation converter then recovers the data encoded in the received optical signal by mapping the processed signal samples onto the QDB constellation.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 19, 2016
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Sai Chen
  • Publication number: 20160105246
    Abstract: A method comprising, receiving digital-electrical input symbols of a stream of input symbols, the input symbols corresponding to signal points of a symbol constellation. The method also comprises classifying the input symbols, wherein a first symbol class comprises input symbols corresponding to signal points that are variant to rotation of the symbol constellation, and, a second symbol class comprises input symbols corresponding to signal points that are invariant to rotation of the symbol constellation. The method also comprises applying selective differential coding only to those input symbols of the first symbol class.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 14, 2016
    Inventor: Chongjin Xie
  • Publication number: 20160094297
    Abstract: We disclose an optical receiver having a configurable clock-recovery module, an operative configuration of which is selectable based on a bandwidth of the optical input signal. In an example embodiment, the clock-recovery module adopts a first configuration for non-Nyquist optical input signals, and adopts a different second configuration for Nyquist and faster-than-Nyquist optical input signals. The configurability of the clock-recovery module may advantageously prevent the clock-recovery algorithm from breaking down, e.g., due to variability of the bandwidth of the optical input signal caused by the variability of the routes that optical signals may take in the corresponding optical-transport network before arriving at the optical receiver.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventor: Chongjin Xie
  • Publication number: 20150381286
    Abstract: We disclose an optical receiver that can receive PDM-QDB and PDM-QPSK signals without hardware changes. In an example embodiment, the optical receiver includes a MIMO equalizer configured to perform electronic polarization de-multiplexing and ISI compensation. The constant modulus algorithm that controls the configuration of the MIMO equalizer also causes the MIMO equalizer to output signal samples corresponding to the QPSK modulation format regardless of whether the received optical signal is QDB-modulated or QPSK-modulated. A QPSK-to-QDB constellation converter processes the signal samples generated by the MIMO equalizer to convert them into the QDB modulation format. A QDB decoder coupled to the constellation converter then recovers the data encoded in the received optical signal by mapping the processed signal samples onto the QDB constellation.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Chongjin Xie, Sai Chen
  • Patent number: 9020364
    Abstract: In one embodiment, an optical receiver has a bulk dispersion compensator and a butterfly equalizer serially connected to one another to perform dispersion-compensation processing and electronic polarization de-multiplexing. The bulk dispersion compensator has a relatively large dispersion-compensation capacity, but is relatively slow and operates in a quasi-static configuration. The butterfly equalizer has a relatively small dispersion-compensation capacity, but can be dynamically reconfigured on a relatively fast time scale to track the changing conditions in the optical-transport link. The optical receiver has a feedback path that enables the configuration of the bulk dispersion compensator to be changed based on the configuration of the butterfly equalizer in a manner that advantageously enables the receiver to tolerate larger amounts of chromatic dispersion and/or polarization-mode dispersion than without the use of the feedback path.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Peter J. Winzer, Stefan Weisser, Andreas Leven
  • Publication number: 20150086200
    Abstract: An apparatus inputs an input configured to receive an input optical signal, and an output configured to output an output optical signal. A superchannel converter is coupled between the input and the output. The superchannel converter is configured to convert N spatial modes of the input optical signal to M spatial modes of the output optical signal.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Chongjin Xie, Roland Ryf
  • Publication number: 20150086216
    Abstract: An apparatus includes an optical transmitter configured to provide an optical signal amplitude-modulated among M different levels. A constellation control module is configured to provide a drive signal to control the optical signal. A feedback module is configured to receive a measure of spacing between amplitude peaks of a symbol constellation of the optical signal. The feedback module is further configured to regulate the constellation control module to adjust the optical signal in response to the measure of spacing.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Chongjin Xie, Po Dong, Peter Winzer
  • Patent number: 8897655
    Abstract: An optical transport system in which (i) an optical transmitter is configured to adaptively change an operative constellation to use a constellation that provides optimal performance characteristics for the present optical-link conditions and/or (ii) an optical receiver is configured to change shapes of the decision regions corresponding to an operative constellation to adapt them to the type of signal distortions experienced by a transmitted optical signal in the optical link between the transmitter and receiver. Under some optical-link conditions, the optical receiver might use a decision-region configuration in which a decision region corresponding to a first constellation point includes an area that is closer in distance to a different second constellation point than to the first constellation point.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: November 25, 2014
    Assignee: Alcatel Lucent
    Inventors: René-Jean Essiambre, Chongjin Xie
  • Patent number: 8867926
    Abstract: An apparatus comprises a coherent optical transmitter. The coherent optical transmitter comprises a first modulator for generating a first polarization, a second modulator for generating a second polarization, and a symbol interleaver configured to receive a first symbol stream intended to be transmitted on a first polarization and a second symbol stream intended to be transmitted on a second polarization, to direct one portion of symbols of the first symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the first symbol stream to the second modulator for modulation onto the second polarization, and to direct one portion of symbols of the second symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the second symbol stream to the second modulator for modulation onto the second polarization.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: October 21, 2014
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Luis Salamanca
  • Patent number: 8849130
    Abstract: One coherent optical receiver includes a 3×3 coupler for receiving a signal and a local oscillator into a first and a third input port respectively, and three detectors for detecting a respective output of the coupler to generate corresponding first, second and third detected signals. A detected signal is filtered by an Alternating Current (AC) coupler to generate a respective first, second or third filtered signal. An adder adds the first, the second and the third filtered signals to determine a directly detected signal term. A first subtractor subtracts the directly detected signal term from the first filtered signal to determine an in-phase signal. A second subtractor subtracts the directly detected signal term from the third filtered signal to determine a quadrature signal. A digital signal processor processes the in-phase signal and the quadrature signal to recover the optical signal.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 30, 2014
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Peter J. Winzer
  • Publication number: 20140241722
    Abstract: An apparatus, e.g. an optical communication system, includes an optical transmitter and an optical receiver. The transmitter includes a laser configured to provide an optical signal amplitude-modulated among M different levels, e.g. in two polarizations. The receiver is configured to demodulate the optical signal to produce a received symbol constellation including a plurality of symbol rings in a complex I-Q space.
    Type: Application
    Filed: June 27, 2013
    Publication date: August 28, 2014
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Chongjin Xie, Po Dong, Peter Winzer
  • Patent number: 8774574
    Abstract: An apparatus includes an N×1 spatial mode multiplexer, an optical source and an optical receiver. The spatial mode multiplexer has N input ports and an output port end-couplable to a multimode optical fiber. The multiplexer is configured to preferentially couple light between individual ones of the input ports and corresponding spatial optical modes of the multimode optical fiber. The optical source is connected to a first one of the input ports to launch an optical probe pulse into the fiber. The optical receiver is connected to electrically analyze an optical signal backscattered from the multimode optical fiber and output by a second one of the input ports in response to the launch of the optical probe pulse into the fiber.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 8, 2014
    Assignee: Alcatel Lucent
    Inventors: Chongjin Xie, Roland Ryf
  • Publication number: 20140086594
    Abstract: In one embodiment, an optical receiver has a bulk dispersion compensator and a butterfly equalizer serially connected to one another to perform dispersion-compensation processing and electronic polarization de-multiplexing. The bulk dispersion compensator has a relatively large dispersion-compensation capacity, but is relatively slow and operates in a quasi-static configuration. The butterfly equalizer has a relatively small dispersion-compensation capacity, but can be dynamically reconfigured on a relatively fast time scale to track the changing conditions in the optical-transport link. The optical receiver has a feedback path that enables the configuration of the bulk dispersion compensator to be changed based on the configuration of the butterfly equalizer in a manner that advantageously enables the receiver to tolerate larger amounts of chromatic dispersion and/or polarization-mode dispersion than without the use of the feedback path.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Chongjin Xie, Peter J. Winzer, Stefan Weisser, Andreas Leven
  • Publication number: 20140079394
    Abstract: An apparatus comprises a coherent optical transmitter. The coherent optical transmitter comprises a first modulator for generating a first polarization, a second modulator for generating a second polarization, and a symbol interleaver configured to receive a first symbol stream intended to be transmitted on a first polarization and a second symbol stream intended to be transmitted on a second polarization, to direct one portion of symbols of the first symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the first symbol stream to the second modulator for modulation onto the second polarization, and to direct one portion of symbols of the second symbol stream to the first modulator for modulation onto the first polarization and another portion of the symbols of the second symbol stream to the second modulator for modulation onto the second polarization.
    Type: Application
    Filed: September 30, 2012
    Publication date: March 20, 2014
    Inventors: Chongjin Xie, Luis Salamanca