Patents by Inventor Chongying Xu

Chongying Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7838073
    Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 23, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum
  • Publication number: 20100291299
    Abstract: Cyclopentadienyl and Indenyl barium/strontium metal precursors and Lewis base adducts thereof are described. Such precursors have utility for forming Ba- and/or Sr-containing films on substrates, in the manufacture of microelectronic devices or structures.
    Type: Application
    Filed: August 3, 2008
    Publication date: November 18, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas M. Cameron, Chongying Xu
  • Publication number: 20100285663
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as low dielectric constant (k) thin films, high k gate silicates, low temperature silicon epitaxial films, and films containing silicon nitride (Si3N4), siliconoxynitride (SiOxNy) and/or silicon dioxide (SiO2). The precursors of the invention are amenable to use in low temperature (e.g., <500° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Application
    Filed: July 17, 2010
    Publication date: November 11, 2010
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Ziyun WANG, Chongying Xu, Ravi K. Laxman, Thomas H. Baum, Bryan Hendrix, Jeffrey Roeder
  • Publication number: 20100279011
    Abstract: Bismuth precursors having utility for forming highly conformal bismuth-containing films by low temperature (<300° C.) vapor deposition processes such as CVD and ALD, including bismuth aminidates, bismuth guanidates, bismuth isoureates, bismuth carbamates and bismuth thiocarbamates, bismuth beta-diketonates, bismuth diketoiminates, bismuth diketiiminates, bismuth allyls, bismuth cyclopentadienyls, bismuth alkyls, bismuth alkoxides, and bismuth silyls with pendant ligands, bismuth silylamides, bismuth chelated amides, and bismuth ditelluroimidodiphosphinates. Also described are methods of making such precursors, and packaged forms of such precursors suitable for use in the manufacture of microelectronic device products. These bismuth precursors are usefully employed to form bismuth-containing films, such as films of GBT, Bi2Te3, Bi4Ti3O12, SrBi2Ta2O9, Bi—Ta—O, BiP and thermoelectric bismuth-containing films.
    Type: Application
    Filed: October 31, 2008
    Publication date: November 4, 2010
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Bryan C. Hendrix, William Hunks, Thomas M. Cameron, Matthias Stender, Gregory T. Stauf, Jeffrey F. Roeder
  • Publication number: 20100270508
    Abstract: Zirconium precursors of the formulae Such precursors are liquids at room temperature, and can be employed in vapor deposition processes such as ALD to form zirconium-containing films, e.g., high k dielectric films on microelectronic device substrates. The zirconium precursors can be stabilized in such vapor deposition processes by thermal stabilization amine additives.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 28, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Thomas M. Cameron, Bryan C. Hendrix, John N. Gregg
  • Publication number: 20100255198
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Application
    Filed: August 31, 2007
    Publication date: October 7, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Publication number: 20100240918
    Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.
    Type: Application
    Filed: May 30, 2010
    Publication date: September 23, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20100221914
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
    Type: Application
    Filed: May 11, 2010
    Publication date: September 2, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan Hendrix, Jeffrey F. Roeder
  • Patent number: 7786320
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as low dielectric constant (k) thin films, high k gate silicates, low temperature silicon epitaxial films, and films containing silicon nitride (Si3N4), siliconoxynitride (SiOxNy) and/or silicon dioxide (SiO2). The precursors of the invention are amenable to use in low temperature (e.g., <500° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: August 31, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Ravi K. Laxman, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder
  • Publication number: 20100215842
    Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 26, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Tianniu CHEN, Chongying XU, Thomas H. BAUM
  • Patent number: 7781605
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: August 24, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Tianniu Chen, Thomas H. Baum
  • Publication number: 20100209610
    Abstract: A metal precursor, selected from among: (i) precursors of the formula (NR1R2)4-xM(chelate)x, and (ii) precursors of the formula (NR10R11)4-2yM(12RN(CH2)zNR13)y, wherein: x=1, 2, 3, or 4; M=Ti, Zr, or Hf; each chelate is independently selected from among guanidinate, amidinate, and isoureate ligands of specific formula; y is 0, 1, or 2; and each of R1, R2, R10, R11, R12 and R13 is independently selected from among H, C1-C12 alkyl, C1-C12 alkylamino, C1-C12 alkoxy, C3-C10 cycloalkyl, C2-C12 alkenyl, C7-C12 aralkyl, C7-C12 alkylaryl, C6-C12 aryl, C5-C12 heteroaryl, C1-C10 perfluoroalkyl, and silicon-containing groups selected from the group consisting of silyl, alkylsilyl, perfluoroalkylsilyl, triarylsilyl and alkylsilylsilyl, aminoalkyl, alkoxyalkyl, aryloxyalkyl, imidoalkyl, acetylalkyl, and N-bonded functionality between two different nitrogen atoms of the precursor can be C1-C4 alkylene, silylene (—SiH2—), or C1-C4 dialkylsilylene.
    Type: Application
    Filed: July 16, 2008
    Publication date: August 19, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas M. Cameron, Chongying Xu
  • Publication number: 20100209598
    Abstract: Apparatus and method for generating ruthenium tetraoxide in situ for use in vapor deposition, e.g., atomic layer deposition (ALD), of ruthenium-containing films on microelectronic device substrates. The ruthenium tetraoxide can be generated on demand by reaction of ruthenium or ruthenium dioxide with an oxic gas such as oxygen or ozone. In one implementation, ruthenium tetraoxide thus generated is utilized with a strontium organometallic precursor for atomic layer deposition of strontium ruthenate films of extremely high smoothness and purity.
    Type: Application
    Filed: February 13, 2010
    Publication date: August 19, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Weimin Li, Thomas M. Cameron
  • Patent number: 7750173
    Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.
    Type: Grant
    Filed: January 12, 2008
    Date of Patent: July 6, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20100164057
    Abstract: A full fill trench structure comprising a microelectronic device substrate having a high aspect ratio trench therein and a full filled mass of silicon dioxide in the trench, wherein the silicon dioxide is of a substantially void-free character and has a substantially uniform density throughout its bulk mass. A corresponding method of manufacturing a semiconductor product is described, involving use of specific silicon precursor compositions for use in full filling a trench of a microelectronic device substrate, in which the silicon dioxide precursor composition is processed to conduct hydrolysis and condensation reactions for forming the substantially void-free and substantially uniform density silicon dioxide material in the trench. The fill process may be carried out with a precursor fill composition including silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component, e.g.
    Type: Application
    Filed: June 27, 2008
    Publication date: July 1, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: William Hunks, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Steven M. Bilodeau, Weimin Li
  • Publication number: 20100133689
    Abstract: Copper (I) amidinate precursors for forming copper thin films in the manufacture of semiconductor devices, and a method of depositing the copper (I) amidinate precursors on substrates using chemical vapor deposition or atomic layer deposition processes.
    Type: Application
    Filed: May 11, 2009
    Publication date: June 3, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Alexander Borovik, Thomas H. Baum
  • Patent number: 7713346
    Abstract: This invention relates to silicon precursor compositions for forming silicon-containing films by low temperature (e.g., <300° C.) chemical vapor deposition processes for fabrication of ULSI devices and device structures. Such silicon precursor compositions comprise at least one disilane derivative compound that is fully substituted with alkylamino and/or dialkylamino functional groups.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: May 11, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Thomas H. Baum, Bryan C. Hendrix, Jeffrey F. Roeder
  • Publication number: 20100112211
    Abstract: Zirconium, hafnium, titanium and silicon precursors useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of corresponding zirconium-containing, hafnium-containing, titanium-containing and silicon-containing films, respectively. The disclosed precursors achieve highly conformal deposited films characterized by minimal carbon incorporation.
    Type: Application
    Filed: April 13, 2008
    Publication date: May 6, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Jeffrey F. Roeder, Tianniu Chen, Bryan C. Hendrix, Brian Benac, Thomas M. Cameron, David W. Peters, Gregory T. Stauf, Leah Maylott
  • Patent number: 7709384
    Abstract: Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and/or ferroelectric thin films.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: May 4, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Tianniu Chen, Chongying Xu, Thomas H. Baum
  • Publication number: 20100095865
    Abstract: Precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of strontium ruthenium oxide (SrRuO3) thin films, e.g., in the manufacture of microelectronic devices, as well as processes of making and using such precursors, and precursor supply systems containing such precursor compositions in packaged form. Cyclopentadienyl compounds of varied type are described, including cyclopentadienyl as well as non cyclopentadienyl ligands coordinated to ruthenium, strontium or barium central atoms. The precursors of the invention are useful for forming contacts for microelectronic memory device structures, and in a specific aspect for selectively coating copper metallization without deposition on associated dielectric, under deposition conditions in a forming gas ambient.
    Type: Application
    Filed: March 12, 2007
    Publication date: April 22, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Bryan C. Hendrix, Thomas M. Cameron, Jeffrey F. Roeder, Matthias Stender, Tianniu Chen