Patents by Inventor Choon Kuan Lee

Choon Kuan Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230005802
    Abstract: A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
    Type: Application
    Filed: June 17, 2022
    Publication date: January 5, 2023
    Inventors: Hong Wan Ng, Choon Kuan Lee, David J. Corisis, Chin Hui Chong
  • Patent number: 11367667
    Abstract: A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: June 21, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Hong Wan Ng, Choon Kuan Lee, David J. Corisis, Chin Hui Chong
  • Patent number: 11239128
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Patent number: 11189548
    Abstract: Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: November 30, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Ai-Chie Wang, Choon Kuan Lee, Chin Hui Chong, Wuu Yean Tay
  • Publication number: 20200286801
    Abstract: A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 10, 2020
    Inventors: Hong Wan Ng, Choon Kuan Lee, David J. Corisis, Chin Hui Chong
  • Patent number: 10593607
    Abstract: A device is disclosed which includes, in one illustrative example, an integrated circuit die having an active surface and a molded body extending around a perimeter of the die, the molded body having lips that are positioned above a portion of the active surface of the die. Another illustrative example includes an integrated circuit die having an active surface, a molded body extending around a perimeter of the die and a CTE buffer material formed around at least a portion of the perimeter of the die adjacent the active surface of the die, wherein the CTE buffer material is positioned between a portion of the die and a portion of the molded body and wherein the CTE buffer material has a coefficient of thermal expansion that is intermediate a coefficient of thermal expansion for the die and a coefficient of thermal expansion for the molded body.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: March 17, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hong Wan Ng, Choon Kuan Lee, David J. Corisis, Chin Hui Chong
  • Publication number: 20190371693
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Patent number: 10448509
    Abstract: Electronic devices include a substrate with first and second pairs of conductive traces extending in or on the substrate. A first conductive interconnecting member extends through a hole in the substrate and communicates electrically with a first trace of each of the first and second pairs, while a second conductive interconnecting member extends through the hole and communicates electrically with the second trace of each of the first and second pairs. The first and second interconnecting members are separated from one another by a distance substantially equal to a distance separating the conductive traces in each pair. Electronic device assemblies include a transmitting device configured to transmit a differential signal through a conductive structure to a receiving device. The conductive structure includes first and second pair of conductive traces with first and second interconnecting members providing electrical communication therebetween.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: October 15, 2019
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Choon Kuan Lee, Chin Hui Chong
  • Patent number: 10431513
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: October 1, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Patent number: 10211114
    Abstract: Microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a packaged microelectronic device can include an interposer substrate with a plurality of interposer contacts. A microelectronic die is attached and electrically coupled to the interposer substrate. The device further includes a casing covering the die and at least a portion of the interposer substrate. A plurality of electrically conductive through-casing interconnects are in contact with and projecting from corresponding interposer contacts at a first side of the interposer substrate. The through-casing interconnects extend through the thickness of the casing to a terminus at the top of the casing. The through-casing interconnects comprise a plurality of filaments attached to and projecting away from the interposer contacts in a direction generally normal to the first side of the interposer substrate.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: February 19, 2019
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 10008468
    Abstract: Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a packaged microelectronic device can include a support member, a first die attached to the support member, and a second die attached to the first die in a stacked configuration. The device can also include an attachment feature between the first and second dies. The attachment feature can be composed of a dielectric adhesive material. The attachment feature includes (a) a single, unitary structure covering at least approximately all of the back side of the second die, and (b) a plurality of interconnect structures electrically coupled to internal active features of both the first die and the second die.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: June 26, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Choon Kuan Lee, Chin Hui Chong, David J. Corisis
  • Publication number: 20180005909
    Abstract: Microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a packaged microelectronic device can include an interposer substrate with a plurality of interposer contacts. A microelectronic die is attached and electrically coupled to the interposer substrate. The device further includes a casing covering the die and at least a portion of the interposer substrate. A plurality of electrically conductive through-casing interconnects are in contact with and projecting from corresponding interposer contacts at a first side of the interposer substrate. The through-casing interconnects extend through the thickness of the casing to a terminus at the top of the casing. The through-casing interconnects comprise a plurality of filaments attached to and projecting away from the interposer contacts in a direction generally normal to the first side of the interposer substrate.
    Type: Application
    Filed: September 12, 2017
    Publication date: January 4, 2018
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Publication number: 20170301598
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Application
    Filed: May 1, 2017
    Publication date: October 19, 2017
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Publication number: 20170288177
    Abstract: Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Inventors: Ai Chie Wang, Choon Kuan Lee, Chin Hui Chong, Wuu Yean Tay
  • Publication number: 20170271228
    Abstract: Disclosed is a carrierless chip package for integrated circuit devices, and various methods of make same. In one illustrative embodiment, the device includes an integrated circuit chip comprising an exposed backside surface defining a plane, a plurality of wire bonds that are conductively coupled to the integrated circuit chip, each of the plurality of wire bonds being conductively coupled to a conductive exposed portion, a portion of the conductive exposed portion being positioned in the plane defined by the backside surface, and an encapsulant material positioned adjacent the integrated circuit chip and the plurality of wire bonds.
    Type: Application
    Filed: June 2, 2017
    Publication date: September 21, 2017
    Inventors: David J. Corisis, Choon Kuan Lee, Chin Hui Chong
  • Patent number: 9768121
    Abstract: Stacked microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a stacked microelectronic device assembly can include a first known good packaged microelectronic device including a first interposer substrate. A first die and a first through-casing interconnects are electrically coupled to the first interposer substrate. A first casing at least partially encapsulates the first device such that a portion of each first interconnect is accessible at a top portion of the first casing. A second known good packaged microelectronic device is coupled to the first device in a stacked configuration. The second device can include a second interposer substrate having a plurality of second interposer pads and a second die electrically coupled to the second interposer substrate. The exposed portions of the first interconnects are electrically coupled to corresponding second interposer pads.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: September 19, 2017
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 9721874
    Abstract: Pre-encapsulated lead frames suitable for use in microelectronic device packages are disclosed. Individual lead frames can include a set of multiple lead fingers arranged side by side with neighboring lead fingers spaced apart from each other by a corresponding gap. An encapsulating compound at least partially encapsulates the set of lead fingers without encapsulating a microelectronic device. The encapsulating compound can generally fill the plurality of gaps between two adjacent lead fingers.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: August 1, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Ai Chie Wang, Choon Kuan Lee, Chin Hui Chong, Wuu Yean Tay
  • Patent number: 9640458
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 2, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Publication number: 20170103961
    Abstract: Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a packaged microelectronic device can include a support member, a first die attached to the support member, and a second die attached to the first die in a stacked configuration. The device can also include an attachment feature between the first and second dies. The attachment feature can be composed of a dielectric adhesive material. The attachment feature includes (a) a single, unitary structure covering at least approximately all of the back side of the second die, and (b) a plurality of interconnect structures electrically coupled to internal active features of both the first die and the second die.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventors: Choon Kuan Lee, Chin Hui Chong, David J. Corisis
  • Patent number: 9530748
    Abstract: Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices are disclosed herein. In one embodiment, a packaged microelectronic device can include a support member, a first die attached to the support member, and a second die attached to the first die in a stacked configuration. The device can also include an attachment feature between the first and second dies. The attachment feature can be composed of a dielectric adhesive material. The attachment feature includes (a) a single, unitary structure covering at least approximately all of the back side of the second die, and (b) a plurality of interconnect structures electrically coupled to internal active features of both the first die and the second die.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: December 27, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Choon Kuan Lee, Chin Hui Chong, David J. Corisis