Patents by Inventor Christiaan Kok

Christiaan Kok has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230321727
    Abstract: The present invention relates to a method and a system for treating a surface of an object obtained by direct metal laser sintering. The object is sintered from a metal powder with a grain size distribution. Due to the manufacturing process, the object can comprise a rough surface with remaining grains of the metal powder attached to the surface. The method according to the present invention provides parameters for post-processing the object to achieve a smooth surface suitable for use in medical imaging systems.
    Type: Application
    Filed: August 25, 2021
    Publication date: October 12, 2023
    Inventors: GEREON VOGTMEIER, CHRISTIAAN KOK
  • Patent number: 11762107
    Abstract: The invention relates to a combined detector (660) comprising a gamma radiation detector (100) and an X-ray radiation detector (661). The gamma radiation detector (100) comprises a gamma scintillator array (101x, y), an optical modulator (102) and a first photodetector array (103a, b) for detecting the first scintillation light generated by the gamma scintillator array (101x, y). The optical modulator (102) is disposed between the gamma scintillator array (101x, y) and the first photodetector array (103a, b) for modulating a transmission of the first scintillation light between the gamma scintillator array (101x, y) and the first photodetector array (103a, b). The optical modulator (102) comprises at least one optical modulator pixel having a cross sectional area (102?) in a plane that is perpendicular to the gamma radiation receiving direction (104). The cross sectional area of each optical modulator pixel (102?) is greater than or equal to the cross sectional area of each photodetector pixel (103?a, b).
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 19, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventor: Christiaan Kok
  • Patent number: 11058375
    Abstract: An X-ray imaging apparatus (IA) having a plurality of X-ray sources (sj) comprising an anti-scatter grid (ASG) for X-ray imaging comprising at least two sets (Mj) of linear x-radiation opaque strips (STj). Each of the strips in the at least two sets have a respective longitudinal axis (Li). There are at least two strips from different sets of the at least two sets that have non-parallel longitudinal axes.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: July 13, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Heidrun Steinhauser, Christiaan Kok
  • Patent number: 10959693
    Abstract: The present invention relates to a device for aligning an X-ray grating to an X-ray radiation source, the device (10) comprising at least two flat X-ray grating segments (11-19); at least one alignment unit (31-39) for aligning one of the at least two flat X-ray grating segments; wherein the at least two flat X-ray grating segments (11-19) are arranged in juxtaposition and are forming an X-ray grating (20); wherein the at least two flat X-ray grating segments (11-19) each comprise a grating surface (41-49) for X-ray radiation, each grating surface (41-49) comprising a geometrical center; wherein normals (21-29) to each of the grating surfaces (41-49) define a common plane (73), wherein the normals (21-29) intersect the geometrical center of the grating surface (41-49); wherein at least a first of the at least two flat X-ray grating segments (11-19) is rotatable around an axis (131-139) that is perpendicular to the common plane (73); and wherein the first of the at least two flat X-ray grating segments (11-19)
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 30, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christiaan Kok, Gereon Vogtmeier, Thomas Koehler, Johannes Wilhelmus Maria Jacobs, Sandeep Unnikrishnan, Dorothee Hermes, Antonius Maria Bernardus Van Mol
  • Patent number: 10942282
    Abstract: The invention relates to a combined imaging detector for detection of gamma and x-ray quanta comprising an x-ray detector (31) for generating x-ray detection signals in response to detected x-ray quanta and a gamma detector (32) for generating gamma detection signals in response to detected gamma quanta. The x-ray detector (31) and the gamma detector (32) are arranged in a stacked configuration along a radiation-receiving direction (33). The gamma detector (32) comprises a gamma collimator plate (320) comprising a plurality of pinholes (321), and a gamma conversion layer (322, 324) for converting detected gamma quanta into gamma detection signals.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Herfried Karl Wieczorek, Johannes Wilhelmus Maria Jacobs, Herman Stegehuis, Alessandro Radaelli, Christiaan Kok, Peter Lex Alving
  • Publication number: 20200378029
    Abstract: The present invention relates to a device for anodized oxidation of an anode element for a curved X-ray grating, the device (10) comprising: an anode element (12); a cathode element (14); an electrolytic medium (16); a conductor element (18); and a carrier element (20); wherein the anode element (12) comprises a first side (11) and a second side (13), wherein the second side (13) faces opposite to the first side (11); wherein the carrier element (20) comprises a curved surface section (21) that extends along a curvature around a center of curvature (30); wherein the carrier element (20) is configured to receive the second side (13) of the anode element (12) for attaching the conductor element (18) to the first side (11) of the anode element (12); wherein the curved surface section (21) is configured to receive the conductor element (18) after detaching the second side (13) of the anode element (12) from the carrier element (20); wherein the electrolytic medium (16) is configured to connect the anode element (
    Type: Application
    Filed: December 10, 2018
    Publication date: December 3, 2020
    Inventors: GEREON VOGTMEIER, CHRISTIAAN KOK, THOMAS KOEHLER, ANDRIY YAROSHENKO, JOHANNES WILHELMUS MARIA JACOBS, SANDEEP NIKRISHNAN, DOROTHEE HERMES, ANTONIUS MARIA BERNARDUS VAN MOL
  • Publication number: 20200315559
    Abstract: An X-ray imaging apparatus (IA) having a plurality of X-ray sources (sj) comprising an anti-scatter grid (ASG) for X-ray imaging comprising at least two sets (Mj) of linear x-radiation opaque strips (STj). Each of the strips in the at least two sets have a respective longitudinal axis (Li). There are at least two strips from different sets of the at least two sets that have non-parallel longitudinal axes.
    Type: Application
    Filed: June 1, 2017
    Publication date: October 8, 2020
    Inventors: HEIDRUN STEINHAUSER, CHRISTIAAN KOK
  • Publication number: 20200297297
    Abstract: The present invention relates to a device for aligning an X-ray grating to an X-ray radiation source, the device (10) comprising at least two flat X-ray grating segments (11-19); at least one alignment unit (31-39) for aligning one of the at least two flat X-ray grating segments; wherein the at least two flat X-ray grating segments (11-19) are arranged in juxtaposition and are forming an X-ray grating (20); wherein the at least two flat X-ray grating segments (11-19) each comprise a grating surface (41-49) for X-ray radiation, each grating surface (41-49) comprising a geometrical center; wherein normals (21-29) to each of the grating surfaces (41-49) define a common plane (73), wherein the normals (21-29) intersect the geometrical center of the grating surface (41-49); wherein at least a first of the at least two flat X-ray grating segments (11-19) is rotatable around an axis (131-139) that is perpendicular to the common plane (73); and wherein the first of the at least two flat X-ray grating segments (11-19)
    Type: Application
    Filed: December 10, 2018
    Publication date: September 24, 2020
    Inventors: CHRISTIAAN KOK, GEREON VOGTMEIER, THOMAS KOEHLER, JOHANNES WILHELMUS MARIA JACOBS, SANDEEP UNNIKRISHNAN, DOROTHEE HERMES, ANTONIUS MARIA BERNARDUS VAN MOL
  • Patent number: 10682106
    Abstract: An anti-scatter device (10) for an X-ray detector (100) is provided. The anti-scatter device (10) comprises an anti-scatter grid (12) with a plurality of slats (13) for absorbing X-rays and a cover element (14, 14a) arranged on a side (17a) of the anti-scatter grid (12), wherein ends (16a) of the slats (13) are coupled to the cover element (14, 14a), and the cover element (14, 14a) comprises an electroactive polymer material. A dimension of the cover element (14, 14a) is changeable by applying a voltage to the electroactive polymer material, such that a distance between the ends (16a) of the slats is changeable by applying the voltage.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 16, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christiaan Kok, Johannes Wilhelmus Maria Jacobs, Robertus Marinus Wilhelmus Raaijmakers
  • Publication number: 20190343471
    Abstract: An anti-scatter device (10) for an X-ray detector (100) is provided. The anti-scatter device (10) comprises an anti-scatter grid (12) with a plurality of slats (13) for absorbing X-rays and a cover element (14, 14a) arranged on a side (17a) of the anti-scatter grid (12), wherein ends (16a) of the slats (13) are coupled to the cover element (14, 14a), and the cover element (14, 14a) comprises an electroactive polymer material. A dimension of the cover element (14, 14a) is changeable by applying a voltage to the electroactive polymer material, such that a distance between the ends (16a) of the slats is changeable by applying the voltage.
    Type: Application
    Filed: August 25, 2017
    Publication date: November 14, 2019
    Inventors: CHRISTIAAN KOK, JOHANNES WILHELMUS MARIA JACOBS, ROBERTUS MARINUS WILHELMUS RAAIJMAKERS
  • Publication number: 20190310384
    Abstract: The invention relates to a combined detector (660) comprising a gamma radiation detector (100) and an X-ray radiation detector (661). The gamma radiation detector (100) comprises a gamma scintillator array (101x, y), an optical modulator (102) and a first photodetector array (103a, b) for detecting the first scintillation light generated by the gamma scintillator array (101x, y). The optical modulator (102) is disposed between the gamma scintillator array (101x, y) and the first photodetector array (103a, b) for modulating a transmission of the first scintillation light between the gamma scintillator array (101x, y) and the first photodetector array (103a, b). The optical modulator (102) comprises at least one optical modulator pixel having a cross sectional area (102?) in a plane that is perpendicular to the gamma radiation receiving direction (104). The cross sectional area of each optical modulator pixel (102?) is greater than or equal to the cross sectional area of each photodetector pixel (103?a, b).
    Type: Application
    Filed: December 21, 2017
    Publication date: October 10, 2019
    Inventor: Christiaan KOK
  • Publication number: 20190243005
    Abstract: The invention relates to a combined imaging detector for detection of gamma and x-ray quanta comprising an x-ray detector (31) for generating x-ray detection signals in response to detected x-ray quanta and a gamma detector (32) for generating gamma detection signals in response to detected gamma quanta. The x-ray detector (31) and the gamma detector (32) are arranged in a stacked configuration along a radiation-receiving direction (33). The gamma detector (32) comprises a gamma collimator plate (320) comprising a plurality of pinholes (321), and a gamma conversion layer (322, 324) for converting detected gamma quanta into gamma detection signals.
    Type: Application
    Filed: September 6, 2017
    Publication date: August 8, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Herfried Karl WIECZOREK, Johannes Wilhelmus Maria JACOBS, Herman STEGEHUIS, Alessandro RADAELLI, Christiaan KOK, Peter Lex ALVING
  • Patent number: 7544939
    Abstract: A lens of particle-optical apparatus, such as the objective lens, suffers from aberrations. As is already known since decades Ronchigrams can be used to determine these aberrations of particle-optical lenses. Such methods rely e.g. on the determination of the 2nd derivative of the aberration function on the basis of local magnification in one or a set of Ronchigrams. Being dependent on the 2nd derivative the mathematics of these methods allow only (infinitesimal) small shifts between the Ronchigrams. However, this implies that e.g. the spatial quantization noise of the camera recording the Ronchigrams results in a large error. These conflicting requirements limit the accuracy and thus the usefulness of the known methods. The invention describes a set of algorithms which result in an improved method to quantify the lens aberration coefficients using a set of Ronchigrams.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: June 9, 2009
    Assignee: FEI Company
    Inventors: Marinus Johannes van der Zande, Christiaan Kok, Bernd Rieger
  • Publication number: 20070125945
    Abstract: A lens of particle-optical apparatus, such as the objective lens, suffers from aberrations. As is already known since decades Ronchigrams can be used to determine these aberrations of particle-optical lenses. Such methods rely e.g. on the determination of the 2nd derivative of the aberration function on the basis of local magnification in one or a set of Ronchigrams. Being dependent on the 2nd derivative the mathematics of these methods allow only (infinitesimal) small shifts between the Ronchigrams. However, this implies that e.g. the spatial quantization noise of the camera recording the Ronchigrams results in a large error. These conflicting requirements limit the accuracy and thus the usefulness of the known methods. The invention describes a set of algorithms which result in an improved method to quantify the lens aberration coefficients using a set of Ronchigrams.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 7, 2007
    Applicant: FEI Company
    Inventors: Marinus van der Zande, Christiaan Kok, Bernd Rieger