Patents by Inventor Christian Karl Schmitzer

Christian Karl Schmitzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10677876
    Abstract: Systems and methods for operating and calibrating measurement devices are provided herein. The measurement devices generate reference current signals and sense the reference current signals in a conductor under test, which sensed signals are used to determine a calibration factor or a position of the conductor under test. A calibration system may control a calibration voltage source to selectively output calibration voltages in a calibration conductor. The calibration system may obtain data from the electrical parameter measurement device captured by the electrical parameter measurement device when measuring the calibration conductor. Such data may include one or more reference current measurements, one or more voltage measurements, etc. The calibration system utilizes the obtained measurements to generate calibration data which may be stored on the voltage measurement device for use thereby during subsequent operation.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 9, 2020
    Assignee: Fluke Corporation
    Inventors: Christian Karl Schmitzer, Ronald Steuer, Ricardo Rodriguez
  • Publication number: 20190346529
    Abstract: Systems and methods for operating and calibrating measurement devices are provided herein. The measurement devices generate reference current signals and sense the reference current signals in a conductor under test, which sensed signals are used to determine a calibration factor or a position of the conductor under test. A calibration system may control a calibration voltage source to selectively output calibration voltages in a calibration conductor. The calibration system may obtain data from the electrical parameter measurement device captured by the electrical parameter measurement device when measuring the calibration conductor. Such data may include one or more reference current measurements, one or more voltage measurements, etc. The calibration system utilizes the obtained measurements to generate calibration data which may be stored on the voltage measurement device for use thereby during subsequent operation.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 14, 2019
    Inventors: Christian Karl Schmitzer, Ronald Steuer, Ricardo Rodriguez
  • Patent number: 10352967
    Abstract: Systems and methods provide measurement of alternating current (AC) electrical parameters in an insulated wire without requiring a galvanic connection between the insulated wire and a test probe. Measurement systems or instruments may include a housing that includes both a non-contact voltage sensor and a non-contact current sensor. The measurement system obtains measurements from the voltage sensor and the current sensor during a measurement time interval and processes the measurements to determine AC electrical parameters of the insulated wire. The AC electrical parameters may be presented to an operator via a visual indicator device (e.g., display, lights). The AC electrical parameters may additionally or alternatively be communicated to an external device via a wired and/or wireless communications interface.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 16, 2019
    Assignee: FLUKE CORPORATION
    Inventors: Ronald Steuer, Peter Radda, Ricardo Rodriguez, David L. Epperson, Patrick Scott Hunter, Paul Andrew Ringsrud, Clark N. Huber, Christian Karl Schmitzer, Jeffrey Worones, Michael F. Gallavan
  • Patent number: 10139435
    Abstract: Systems and methods for measuring alternating current (AC) voltage of an insulated conductor (e.g., insulated wire) are provided, without requiring a galvanic connection between the conductor and a test electrode or probe. A non-galvanic contact (or “non-contact”) voltage measurement system includes a conductive sensor, an internal ground guard and a reference shield. A common mode reference voltage source is electrically coupled between the internal ground guard and the reference shield to generate an AC reference voltage which causes a reference current to pass through the conductive sensor. At least one processor receives a signal indicative of current flowing through the conductive sensor due to the AC reference voltage and the AC voltage in the insulated conductor, and determines the AC voltage in the insulated conductor based at least in part on the received signal.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 27, 2018
    Assignee: Fluke Corporation
    Inventors: Ronald Steuer, Paul A. Ringsrud, Jeffrey Worones, Peter Radda, Christian Karl Schmitzer
  • Publication number: 20180136264
    Abstract: Systems and methods for measuring alternating current (AC) voltage of an insulated conductor (e.g., insulated wire) are provided, without requiring a galvanic connection between the conductor and a test electrode or probe. A non-galvanic contact (or “non-contact”) voltage measurement system includes a conductive sensor, an internal ground guard and a reference shield. A common mode reference voltage source is electrically coupled between the internal ground guard and the reference shield to generate an AC reference voltage which causes a reference current to pass through the conductive sensor. At least one processor receives a signal indicative of current flowing through the conductive sensor due to the AC reference voltage and the AC voltage in the insulated conductor, and determines the AC voltage in the insulated conductor based at least in part on the received signal.
    Type: Application
    Filed: January 23, 2017
    Publication date: May 17, 2018
    Inventors: Ronald Steuer, Paul A. Ringsrud, Jeffrey Worones, Peter Radda, Christian Karl Schmitzer
  • Publication number: 20180136257
    Abstract: Systems and methods provide measurement of alternating current (AC) electrical parameters in an insulated wire without requiring a galvanic connection between the insulated wire and a test probe. Measurement systems or instruments may include a housing that includes both a non-contact voltage sensor and a non-contact current sensor. The measurement system obtains measurements from the voltage sensor and the current sensor during a measurement time interval and processes the measurements to determine AC electrical parameters of the insulated wire. The AC electrical parameters may be presented to an operator via a visual indicator device (e.g., display, lights). The AC electrical parameters may additionally or alternatively be communicated to an external device via a wired and/or wireless communications interface.
    Type: Application
    Filed: June 16, 2017
    Publication date: May 17, 2018
    Inventors: Ronald Steuer, Peter Radda, Ricardo Rodriguez, David L. Epperson, Patrick Scott Hunter, Paul Andrew Ringsrud, Clark N. Huber, Christian Karl Schmitzer, Jeffrey Worones, Michael F. Gallavan