Patents by Inventor Christian Koller

Christian Koller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240167040
    Abstract: The present invention relates to antisense oligonucleotides that reduce expression of A1CF, as well as conjugates, salts and pharmaceutical compositions thereof. The invention also relates to uses of such antisense oligonucleotides, conjugates, salts and pharmaceutical compositions in methods for reducing A1CF expression and in medical uses and methods of treatment of disease, particularly treatment of hepatitis B virus (HBV) infection.
    Type: Application
    Filed: February 17, 2023
    Publication date: May 23, 2024
    Inventors: Gitte Friis, Helene Maria Gylling, Dennis Jul Hansen, Erich Koller, Anaïs Irène Marie Lopez, Dénia Mellal, Susanne Mohr, Lykke Pedersen, Johanna Marie Pose Vicente, Sabine Sewing, Christian Weile
  • Patent number: 11944796
    Abstract: A data collection device comprises: a first portion having one or more features configured for attaching of the first portion to a dosage knob of an injection device; a second portion rotatably coupled with the first portion, wherein at least part of the second portion is movable axially relative to the first portion; a sensor arrangement configured to detect rotation of the first portion relative to the second portion; and a processor arrangement configured to, based on said detected movement, determine a medicament amount expelled by the injection device, wherein the coupling arrangement is configured to provide a non-permanent coupling between the first portion and the dosage knob of the injection device.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: April 2, 2024
    Assignee: Sanofi-Aventis Deutschland GMBH
    Inventors: Maurice Toporek, Matthias Felber, Christoph Matthias Gugl, Marcus-Meinolf Dittrich, Christian Nessel, Stephan Riedel, Armin Koller, Alexander Heinrich, Florian Eberli, Philipp Muller, Sven Zwicker
  • Publication number: 20240066234
    Abstract: A data collection device comprises: a first portion having one or more features configured for attaching of the first portion to a dosage knob of an injection device; a second portion rotatably coupled with the first portion, wherein at least part of the second portion is movable axially relative to the first portion; a sensor arrangement configured to detect rotation of the first portion relative to the second portion; and a processor arrangement configured to, based on said detected movement, determine a medicament amount expelled by the injection device, wherein the coupling arrangement is configured to provide a non-permanent coupling between the first portion and the dosage knob of the injection device.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Maurice Toporek, Matthias Felber, Christoph Matthias Gugl, Marcus-Meinolf Dittrich, Christian Nessel, Stephan Riedel, Armin Koller, Alexander Heinrich, Florian Eberli, Philipp Muller, Sven Zwicker
  • Patent number: 11905323
    Abstract: The invention discloses a recombinant protein (P-selectin glycoprotein ligand-1 and Neural Retina-specific Leucine Zipper) PSGL-1-NRL chimeric protein comprising a Selectin Binding domain and a non-covalent dimerization domain, which is a leucine zipper and is more preferably the leucine zipper domain of the human or mouse Neural Retina-specific Leucine Zipper. The chimeric protein further comprises a covalent dimerization domain with at least one cysteine suitable to form a disulfide bridge with another chimeric protein to form a homodimer. In the chimeric protein, the PSGL-1 domain corresponds to the extracellular region of Human PSGL-1 and is more preferably the selectin binding region of the mature protein. The chimeric protein is correctly post-translationally modified and is efficiently expressed in a mammalian system. It is sulfated, O-linked glycosylated and sialylated and binds P, E and L selectin, allowing in vivo and in vitro targeting for diagnostic or therapeutic purposes.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: February 20, 2024
    Assignee: Bracco Suisse
    Inventors: Federico Maisano, Federico Crivellin, Thierry Bettinger, Philippe Bussat, Samir Cherkaoui, Christian Koller, Adrian Lobito
  • Publication number: 20230348966
    Abstract: A method for sequencing a nucleic acid template includes: (a) performing a first sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a first predetermined ordering of nucleotides and/or reagents to obtain a first sequencing result; (b) after the first sequencing process, performing a second sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a second predetermined ordering of nucleotides and/or reagents to obtain a second sequencing result, the second predetermined ordering of nucleotides and/or reagents being different from the first predetermined ordering of nucleotides and/or reagents and at least one of the first and second predetermined orderings of nucleotides and/or reagents being designed for repeat sequencing; and (c) determining a sequence of bases corresponding to at least a portion of the nucleic acid template using both the first sequencing result and the second sequencing result.
    Type: Application
    Filed: April 7, 2023
    Publication date: November 2, 2023
    Inventors: Earl Hubbell, Christian Koller, Nils Homer
  • Publication number: 20230307095
    Abstract: A method for nucleic acid sequencing includes receiving nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, a candidate sequence as corresponding to the sequence for the sample nucleic acid.
    Type: Application
    Filed: March 28, 2023
    Publication date: September 28, 2023
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian KOLLER, Marcin SIKORA, Peter VANDER HORN
  • Publication number: 20230194464
    Abstract: A method for nucleic acid sequencing includes receiving a plurality of observed or measured signals indicative of a parameter observed or measured for a plurality of defined spaces; determining, for at least some of the defined spaces, whether the defined space comprises one or more sample nucleic acids; processing, for at least some of the defined spaces, the observed or measured signal to improve a quality of the observed or measured signal; generating, for at least some of the defined spaces, a set of candidate sequences of bases for the defined space using one or more metrics adapted to associate a score or penalty to the candidate sequences of bases; and selecting the candidate sequence leading to a highest score or a lowest penalty as corresponding to the correct sequence for the one or more sample nucleic acids in the defined space.
    Type: Application
    Filed: October 4, 2022
    Publication date: June 22, 2023
    Inventors: Marcin SIKORA, Melville DAVEY, Christian KOLLER, Simon CAWLEY, Alan WILLIAMS, David KULP
  • Patent number: 11655500
    Abstract: A method for sequencing a nucleic acid template includes: (a) performing a first sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a first predetermined ordering of nucleotides and/or reagents to obtain a first sequencing result; (b) after the first sequencing process, performing a second sequencing process including flowing nucleotides and/or reagents to the nucleic acid template according to a second predetermined ordering of nucleotides and/or reagents to obtain a second sequencing result, the second predetermined ordering of nucleotides and/or reagents being different from the first predetermined ordering of nucleotides and/or reagents and at least one of the first and second predetermined orderings of nucleotides and/or reagents being designed for repeat sequencing; and (c) determining a sequence of bases corresponding to at least a portion of the nucleic acid template using both the first sequencing result and the second sequencing result.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 23, 2023
    Assignee: Life Technologies Corporation
    Inventors: Earl Hubbell, Christian Koller, Nils Homer
  • Patent number: 11636922
    Abstract: A method for nucleic acid sequencing includes receiving observed or measured nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a termination sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, one candidate sequence leading to optimization of a solver function as corresponding to the sequence for the sample nucleic acid.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 25, 2023
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian Koller, Marcin Sikora, Peter Vander Horn
  • Patent number: 11557670
    Abstract: A semiconductor device includes a semiconductor substrate including a barrier region, a channel layer disposed below the barrier region and forming a heterojunction with the barrier region such that a two-dimensional charge carrier gas channel is disposed in the channel layer near the heterojunction, and a sub-channel region disposed below the channel layer, and a first interface in the semiconductor substrate between a first region of type III-V material and a second region of type III-V material that is disposed below the first region of type III-V material, wherein the first and second regions of type III-V material form polarization charges on either side of the first interface, wherein the first interface is within or formed by the sub-channel region, and wherein semiconductor substrate has a vertically varying dopant concentration of deep energy acceptor dopant atoms that is locally increased at the first interface.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: January 17, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Christian Koller, Ingo Daumiller, Lauri Knuuttila, Clemens Ostermaier
  • Publication number: 20220412854
    Abstract: In a method for determination of properties of cuttings from rock drilling the cuttings are crushed between at least two rollers, at least one roller being driven by a motor. A mechanic specific energy of the cuttings is determined by measuring the energy applied by the motor.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 29, 2022
    Inventors: Juergen SCHOEN, Christian KOLLER, Luis Arnaldo GONZALEZ
  • Publication number: 20220389080
    Abstract: The invention discloses a recombinant protein (P-selectin glycoprotein ligand-1 and Neural Retina-specific Leucine Zipper) PSGL-1-NRL chimeric protein comprising a Selectin Binding domain and a non-covalent dimerization domain, which is a leucine zipper and is more preferably the leucine zipper domain of the human or mouse Neural Retina-specific Leucine Zipper. The chimeric protein further comprises a covalent dimerization domain with at least one cysteine suitable to form a disulfide bridge with another chimeric protein to form a homodimer. In the chimeric protein, the PSGL-1 domain corresponds to the extracellular region of Human PSGL-1 and is more preferably the selectin binding region of the mature protein. The chimeric protein is correctly post-translationally modified and is efficiently expressed in a mammalian system. It is sulfated, O-linked glycosylated and sialylated and binds P, E and L selectin, allowing in vivo and in vitro targeting for diagnostic or therapeutic purposes.
    Type: Application
    Filed: May 18, 2022
    Publication date: December 8, 2022
    Applicant: Bracco Suisse SA
    Inventors: Federico MAISANO, Federico CRIVELLIN, Thierry BETTINGER, Philippe BUSSAT, Samir CHERKAOUI, Christian KOLLER, Adrian LOBITO
  • Patent number: 11474070
    Abstract: A method for nucleic acid sequencing includes receiving a plurality of observed or measured signals indicative of a parameter observed or measured for a plurality of defined spaces; determining, for at least some of the defined spaces, whether the defined space comprises one or more sample nucleic acids; processing, for at least some of the defined spaces, the observed or measured signal to improve a quality of the observed or measured signal; generating, for at least some of the defined spaces, a set of candidate sequences of bases for the defined space using one or more metrics adapted to associate a score or penalty to the candidate sequences of bases; and selecting the candidate sequence leading to a highest score or a lowest penalty as corresponding to the correct sequence for the one or more sample nucleic acids in the defined space.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 18, 2022
    Assignee: Life Technologies Corporation
    Inventors: Marcin Sikora, Melville Davey, Christian Koller, Simon Cawley, Alan Williams, David Kulp
  • Publication number: 20220285539
    Abstract: A semiconductor device includes a semiconductor substrate including a barrier region, a channel layer disposed below the barrier region and forming a heterojunction with the barrier region such that a two-dimensional charge carrier gas channel is disposed in the channel layer near the heterojunction, and a sub-channel region disposed below the channel layer, and a first interface in the semiconductor substrate between a first region of type III-V material and a second region of type III-V material that is disposed below the first region of type III-V material, wherein the first and second regions of type III-V material form polarization charges on either side of the first interface, wherein the first interface is within or formed by the sub-channel region, and wherein semiconductor substrate has a vertically varying dopant concentration of deep energy acceptor dopant atoms that is locally increased at the first interface.
    Type: Application
    Filed: March 2, 2021
    Publication date: September 8, 2022
    Inventors: Christian Koller, Ingo Daumiller, Lauri Knuuttila, Clemens Ostermaier
  • Patent number: 11370826
    Abstract: The invention discloses a recombinant protein (P-selectin glycoprotein ligand-1 and Neural Retina-specific Leucine Zipper) PSGL-1-NRL chimeric protein comprising a Selectin Binding domain and a non-covalent dimerization domain, which is a leucine zipper and is more preferably the leucine zipper domain of the human or mouse Neural Retina-specific Leucine Zipper. The chimeric protein further comprises a covalent dimerization domain with at least one cysteine suitable to form a disulfide bridge with another chimeric protein to form a homodimer. In the chimeric protein, the PSGL-1 domain corresponds to the extracellular region of Human PSGL-1 and is more preferably the selectin binding region of the mature protein. The chimeric protein is correctly post-translationally modified and is efficiently expressed in a mammalian system. It is sulfated, O-linked glycosylated and sialylated and binds P, E and L selectin, allowing in vivo and in vitro targeting for diagnostic or therapeutic purposes.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 28, 2022
    Assignee: Bracco Suisse SA
    Inventors: Federico Maisano, Federico Crivellin, Thierry Bettinger, Philippe Bussat, Samir Cherkaoui, Christian Koller, Adrian Lobito
  • Publication number: 20210304843
    Abstract: Methods, system, and kits are provided for sample identification, and, more specifically, for designing, and/or making, and/or using sample discriminating codes or barcodes for identifying sample nucleic acids or other biomolecules or polymers. For example, a plurality of flowspace codewords may be generated, the codewords comprising a string of characters. A location for at least one padding character within the flowspace codewords may be determined. The padding character may be inserted into the flowspace codewords at the determined location. After the inserting, a plurality of the flowspace codewords may be selected based on satisfying a predetermined minimum distance criteria, wherein the selected codewords correspond to valid base space sequences according to a predetermined flow order. And the barcode sequences corresponding to the selected codewords may be manufactured.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 30, 2021
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian KOLLER, Michael D. ALLEN
  • Publication number: 20210217491
    Abstract: Systems and method for determining variants can receive mapped reads and determine a distribution of matched-filter residuals distribution from a plurality of reads at a homopolymer region. The distribution of matched-filter residuals can be fit to uni-modal and bi-modal models. Based on the model that best fits the distribution of matched-filter residuals, the heterozygosity of the sample and the absence or presence of an insertion/deletion in the homopolymer can be determined.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 15, 2021
    Inventors: Sowmi Utiramerur, Dumitru Brinza, Marcin Sikora, Christian Koller, Earl Hubbell, Chantal Roth, Rajesh Gottimukkala
  • Patent number: 10978174
    Abstract: Methods, system, and kits are provided for sample identification, and, more specifically, for designing, and/or making, and/or using sample discriminating codes or barcodes for identifying sample nucleic acids or other biomolecules or polymers. For example, a plurality of flowspace codewords may be generated, the codewords comprising a string of characters. A location for at least one padding character within the flowspace codewords may be determined. The padding character may be inserted into the flowspace codewords at the determined location. After the inserting, a plurality of the flowspace codewords may be selected based on satisfying a predetermined minimum distance criteria, wherein the selected codewords correspond to valid base space sequences according to a predetermined flow order. And the barcode sequences corresponding to the selected codewords may be manufactured.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 13, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian Koller, Michael D. Allen
  • Publication number: 20200082907
    Abstract: A method for nucleic acid sequencing includes: receiving a signal comprising measurements of a parameter measured in response to a plurality of nucleotide flows flowed in a space comprising a sample nucleic acid; normalizing the signal to obtain a normalized signal; adaptively normalizing the normalized signal to obtain an adaptively normalized signal; and predicting a sequence of base calls corresponding to the sample nucleic acid using the adaptively normalized signal.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Inventors: Marcin SIKORA, Earl HUBBELL, Simon CAWLEY, Christian KOLLER
  • Publication number: 20200043571
    Abstract: A method for nucleic acid sequencing includes receiving observed or measured nucleic acid sequencing data from a sequencing instrument that receives and processes a sample nucleic acid in a termination sequencing-by-synthesis process. The method also includes generating a set of candidate sequences of bases for the observed or measured nucleic acid sequencing data by determining a predicted signal for candidate sequences using a simulation framework. The simulation framework incorporates an estimated carry forward rate (CFR), an estimated incomplete extension rate (IER), an estimated droop rate (DR), an estimated reactivated molecules rate (RMR), and an estimated termination failure rate (TFR), the RMR being greater than or equal to zero and the TFR being lesser than one. The method also includes identifying, from the set of candidate sequences of bases, one candidate sequence leading to optimization of a solver function as corresponding to the sequence for the sample nucleic acid.
    Type: Application
    Filed: August 26, 2019
    Publication date: February 6, 2020
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christian KOLLER, Marcin SIKORA, Peter VANDER HORN