Patents by Inventor Christian M. Hansen

Christian M. Hansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10683801
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: June 16, 2020
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20170184021
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 9599070
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 21, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20140123620
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 8128354
    Abstract: A gas turbine engine is provided comprising an outer casing and a plurality of circumferentially positioned vane segments. The outer casing is provided with a circumferential casing slot. The plurality of circumferentially positioned vane segments are coupled to the outer casing. Each vane segment comprises at least one vane airfoil, a radially inner shroud coupled to a first end of the airfoil, a radially outer shroud coupled to a second end of the airfoil, and a strongback fixedly coupled to axially spaced-apart portions of the outer shroud such that a gap is provided between the strongback and the outer shroud. The strongback may comprise axially spaced-apart first and second end portions received in the casing slot.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 6, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Christian M. Hansen, Friedrich T. Rogers
  • Publication number: 20100266399
    Abstract: A gas turbine engine is provided comprising an outer casing and a plurality of circumferentially positioned vane segments. The outer casing is provided with a circumferential casing slot. The plurality of circumferentially positioned vane segments are coupled to the outer casing. Each vane segment comprises at least one vane airfoil, a radially inner shroud coupled to a first end of the airfoil, a radially outer shroud coupled to a second end of the airfoil, and a strongback fixedly coupled to axially spaced-apart portions of the outer shroud such that a gap is provided between the strongback and the outer shroud. The strongback may comprise axially spaced-apart first and second end portions received in the casing slot.
    Type: Application
    Filed: January 17, 2007
    Publication date: October 21, 2010
    Inventors: Christian M. Hansen, Friedrich T. Rogers
  • Patent number: 7435055
    Abstract: A locking spacer assembly for filling a void between adjacent components in a turbine engine. In at least one embodiment, the locking spacer assembly may be configured to be inserted between adjacent turbine blades in a disc groove in a turbine blade stage assembly. The locking spacer assembly may be formed from fore and aft end supports and a locking device having fore and aft angled surfaces for urging the fore and aft end supports into lateral recesses in the disc groove. The locking spacer assembly may also include a mid spacer positioned between the fore and aft end supports. A retainer may be attached to the locking device to draw the fore and aft angled surfaces of the locking device into contact with the fore and aft support surfaces and urge the first and second end supports into lateral recesses in the disc groove.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: October 14, 2008
    Assignee: Siemens Power Generation, Inc.
    Inventors: Christian M. Hansen, Alfred P. Matheny, Brian Potter
  • Publication number: 20040088805
    Abstract: A passenger boarding bridge for use by passengers in an airport terminal for embarking to and disembarking from a parked aircraft is provided with a resilient canopy that conforms to the shape of the outside surface of a parked aircraft without the aid of any external driving assembly or linkages directly attached thereto. The resilient canopy is useful with a wide range of airplanes sizes and, in contrast to existing steel framed weather shielding bellows, the canopy is particularly suited to the rapidly changing curvature of smaller planes and significantly inexpensive to construct.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 13, 2004
    Inventors: Christian M. Hansen, Ralph Bollom, Bruce W. Anderson, Ken Jensen
  • Patent number: 5704086
    Abstract: Passenger boarding bridge extendable sections are provided with roller assemblies supporting one extendable bridge section relative to a second extendable bridge section wherein the roller assemblies assist in reducing the downward load in the overlapping area of the bridge sections.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: January 6, 1998
    Assignee: FMC Corporation
    Inventors: Christian M. Hansen, Kenneth John Stoddard
  • Patent number: D341204
    Type: Grant
    Filed: October 30, 1991
    Date of Patent: November 9, 1993
    Inventors: Christian M. Hansen, Robert C. Butcher, Jr., Kevin D. Lear
  • Patent number: D347479
    Type: Grant
    Filed: April 15, 1992
    Date of Patent: May 31, 1994
    Assignee: Ciba Corning Diagnostics Corp.
    Inventors: Christian M. Hansen, Robert C. Butcher, Jr., Kevin D. Lear