Patents by Inventor Christian Michael Hansen

Christian Michael Hansen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180017074
    Abstract: This disclosure provides systems and methods for reducing stress in vane shroud assemblies by defining a gap between adjacent portions of the airfoil and the shroud whereby stress from the securing force is relieved in a portion of the shroud. The airfoil has a distal end with a contact surface and a tenon. The shroud has a contact surface with the airfoil and accommodates the tenon. An attachment device provides the securing force between the airfoil and shroud contact surfaces through the shroud and the gap serves to reduce stress on the shroud.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 18, 2018
    Inventors: Sharan Shanti, Nandakumar AR, Christian Michael Hansen, Jeremy Peter Latimer
  • Publication number: 20180010617
    Abstract: A gas turbine engine is disclosed having a turbine, one or more hydrocarbon gas combustors, and a compressor. The compressor has a rotor assembly with one or more rotor blade rows extending radially outward from an inner wheel disk. The compressor also has a stator assembly with one or more stator vane rows extending radially inward from an inner casing and positioned between adjacent rotor blade rows. The inner casing extends circumferentially around the rotor assembly and is constructed from at least one low-alpha metal alloy.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 11, 2018
    Inventors: Matthew Stephen Casavant, Kenneth Damon Black, Christian Michael Hansen, Donald Earl Floyd, James Adaickalasamy, Brett Darrick Klingler, Khoa Dang Cao, Kyle Eric Benson, Devin Patrick Perkins, Damian Anthony McClelland
  • Patent number: 9631542
    Abstract: A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products and a turbine section having one or more turbine stages between an upstream end and a downstream end. The one or more turbine stages are driven by the combustion products. The gas turbine engine also includes an exhaust section disposed downstream from the downstream end of the turbine section. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The gas turbine engine also includes a mixing device disposed in the exhaust section. The mixing device is configured to divide the exhaust gas into a first exhaust gas and a second exhaust gas, and to combine the first and second exhaust gases in a mixing region to produce a mixed exhaust gas.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: April 25, 2017
    Assignees: General Electric Company, ExxonMobile Upstream Research Company
    Inventors: Moorthi Subramaniyan, Christian Michael Hansen, Richard A. Huntington, Todd Franklin Denman
  • Patent number: 9518471
    Abstract: Locking spacer assemblies, rotor assemblies and turbomachines are provided. In one embodiment, a locking spacer assembly includes a first end piece and a second end piece each configured to fit into a space between platforms of adjacent rotor blades, the first end piece and second end piece each comprising an outer surface and an inner surface, the outer surface having a profile adapted to project into an attachment slot, wherein the inner surfaces of the first and second end pieces generally face each other. The locking spacer assembly further includes an actuator movable between the inner surfaces, the actuator comprising a projection, the projection comprising a first surface and a second surface formed on the projection and configured to engage the inner surfaces, the first and second surfaces generally perpendicular to radial.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: December 13, 2016
    Assignee: General Electric Company
    Inventors: Christian Michael Hansen, Michael James Healy, Brian Denver Potter
  • Patent number: 9512732
    Abstract: A locking spacer assembly for securing adjacent rotor blades includes a first end piece having a platform portion and a root portion that define an angled first inner surface of the first end piece. The root portion defines a first projection adapted to project into a recess portion of the attachment slot. A second end piece fits between the first inner surface and a sidewall portion of the attachment slot and includes a platform portion and a root portion that define a second projection adapted to project into a recess portion of the attachment slot. The platform portion and the root portion define an angled second inner surface and that is configured to mate with the first inner surface. A borehole extends through the platform portion of the first end piece and the root portion of the second end piece and a fastener extends through the borehole.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: December 6, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Brian Denver Potter, Michael James Healy, Christian Michael Hansen
  • Patent number: 9464531
    Abstract: Locking spacer assemblies, rotor assemblies and turbomachines are provided. In one embodiment, a locking spacer assembly includes a first end piece and a second end piece each configured to fit into a space between platforms of adjacent rotor blades, the first end piece and second end piece each comprising an outer surface and an inner surface, the outer surface having a profile adapted to project into an attachment slot, wherein the inner surfaces of the first and second end pieces generally face each other. The locking spacer assembly further includes an actuator movable between the inner surfaces, the actuator comprising a projection configured to engage the inner surface, the actuator further comprising a plurality of locating protrusions extending from the projection, the locating protrusions configured to fit within locating channels defined in the first end piece and the second end piece.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 11, 2016
    Assignee: General Electric Company
    Inventors: Christian Michael Hansen, Michael James Healy, Brian Denver Potter
  • Publication number: 20150101348
    Abstract: Locking spacer assemblies, rotor assemblies and turbomachines are provided. In one embodiment, a locking spacer assembly includes a first end piece and a second end piece each configured to fit into a space between platforms of adjacent rotor blades, the first end piece and second end piece each comprising an outer surface and an inner surface, the outer surface having a profile adapted to project into an attachment slot, wherein the inner surfaces of the first and second end pieces generally face each other. The locking spacer assembly further includes an actuator movable between the inner surfaces, the actuator comprising a projection configured to engage the inner surface, the actuator further comprising a plurality of locating protrusions extending from the projection, the locating protrusions configured to fit within locating channels defined in the first end piece and the second end piece.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Christian Michael Hansen, Michael James Healy, Brian Denver Potter
  • Publication number: 20150101347
    Abstract: A locking spacer assembly for securing adjacent rotor blades includes a first end piece having a platform portion and a root portion that define an angled first inner surface of the first end piece. The root portion defines a first projection adapted to project into a recess portion of the attachment slot. A second end piece fits between the first inner surface and a sidewall portion of the attachment slot and includes a platform portion and a root portion that define a second projection adapted to project into a recess portion of the attachment slot. The platform portion and the root portion define an angled second inner surface and that is configured to mate with the first inner surface. A borehole extends through the platform portion of the first end piece and the root portion of the second end piece and a fastener extends through the borehole.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Brian Denver Potter, Michael James Healy, Christian Michael Hansen
  • Publication number: 20150101349
    Abstract: Locking spacer assemblies, rotor assemblies and turbomachines are provided. In one embodiment, a locking spacer assembly includes a first end piece and a second end piece each configured to fit into a space between platforms of adjacent rotor blades, the first end piece and second end piece each comprising an outer surface and an inner surface, the outer surface having a profile adapted to project into an attachment slot, wherein the inner surfaces of the first and second end pieces generally face each other. The locking spacer assembly further includes an actuator movable between the inner surfaces, the actuator comprising a projection, the projection comprising a first surface and a second surface formed on the projection and configured to engage the inner surfaces, the first and second surfaces generally perpendicular to radial.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 16, 2015
    Applicant: General Electric Company
    Inventors: Christian Michael Hansen, Michael James Healy, Brian Denver Potter
  • Publication number: 20150000292
    Abstract: A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products and a turbine section having one or more turbine stages between an upstream end and a downstream end. The one or more turbine stages are driven by the combustion products. The gas turbine engine also includes an exhaust section disposed downstream from the downstream end of the turbine section. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The gas turbine engine also includes a mixing device disposed in the exhaust section. The mixing device is configured to divide the exhaust gas into a first exhaust gas and a second exhaust gas, and to combine the first and second exhaust gases in a mixing region to produce a mixed exhaust gas.
    Type: Application
    Filed: June 11, 2014
    Publication date: January 1, 2015
    Inventors: Moorthi Subramaniyan, Christian Michael Hansen, Richard A. Huntington, Todd Franklin Denman
  • Patent number: 8191410
    Abstract: A mechanical drive train for testing a full scale compressor rig is disclosed. The drive train can include an electric motor, a gear box, and a gas turbine. The compressor rig is coupled to the drive train between the gear box and gas turbine. The drive train can further include a torque converter for transferring torque from the electric motor to the compressor rig. The drive train is configured to test a full scale compressor rig over the entire speed and load operating range, allowing for full compressor mapping from choke to stall at full load, part load (power turn down) and partial speed conditions. The drive train can also be used to test a compressor rig or gas turbine over the full range of operability for the compressor rig or gas turbine without having to connect the gas turbine to the power grid at the power generation site.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: June 5, 2012
    Assignee: General Electric Company
    Inventors: Christian Michael Hansen, Douglas Giles Moody, Karl Dean Minto
  • Publication number: 20110048119
    Abstract: A mechanical drive train for testing a full scale compressor rig is disclosed. The drive train can include an electric motor, a gear box, and a gas turbine. The compressor rig is coupled to the drive train between the gear box and gas turbine. The drive train can further include a torque converter for transferring torque from the electric motor to the compressor rig. The drive train is configured to test a full scale compressor rig over the entire speed and load operating range, allowing for full compressor mapping from choke to stall at full load, part load (power turn down) and partial speed conditions. The drive train can also be used to test a compressor rig or gas turbine over the full range of operability for the compressor rig or gas turbine without having to connect the gas turbine to the power grid at the power generation site.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: CHRISTIAN MICHAEL HANSEN, DOUGLAS GILES MOODY, KARL DEAN MINTO
  • Publication number: 20100068050
    Abstract: Base hooks of a vane includes an approximate two times thicker radial geometry, with dimensioning and tolerancing that results in a line-line to loose fit on the forward OD hook surface and the aft ID hook surface. Tolerances thus stack up on the opposite, non-critical surfaces of the hooks (the forward ID hook surface and the aft OD hook surface). The base of the vane is curved to match that of the casing. An interface between the vane base and the casing groove includes a metal alloy liner. Also, a wear coating is provided on the vane attachment hooks. The liner protects the casing groove from wear damage, while the hook coating and the liner provide a wear coupling between the vane base and the casing that provides a barrier between the vane bases and the casing to decrease the wear rate.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 18, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christian Michael Hansen, Roger Claude Beharrysingh