Patents by Inventor Christian Windischberger

Christian Windischberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931954
    Abstract: A method of producing a test body for diffusion tensor imaging, which comprises a plurality of channels in a structuring material, the channels preferably having a maximum cross-section of 625 ?m2, wherein a virtual model of the test body is created and the virtual model is fed to a structuring device which produces the test body by means of a 3D printing-based, in particular lithography-based, structuring process, the structuring process being designed as a multiphoton lithography process, in particular as a multiphoton absorption process, in which the structuring material containing a photosensitizer or photoinitiator is irradiated in a location-selective manner, wherein the radiation is successively focused on focal points lying within the structuring material, resulting in that in each case a volume element of the material located in the focal point is subjected to a change in state by means of a photochemical reaction as a result of multiphoton absorption.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 19, 2024
    Assignee: TECHNISCHE UNIVERSITAT WIEN
    Inventors: Aleksandr Ovsianikov, Peter Gruber, Christian Windischberger, Zoltan Nagy
  • Publication number: 20220111581
    Abstract: A method of producing a test body for diffusion tensor imaging, which comprises a plurality of channels in a structuring material, the channels preferably having a maximum cross-section of 625 ?m2, wherein a virtual model of the test body is created and the virtual model is fed to a structuring device which produces the test body by means of a 3D printing-based, in particular lithography-based, structuring process, the structuring process being designed as a multiphoton lithography process, in particular as a multiphoton absorption process, in which the structuring material containing a photosensitizer or photoinitiator is irradiated in a location-selective manner, wherein the radiation is successively focused on focal points lying within the structuring material, resulting in that in each case a volume element of the material located in the focal point is subjected to a change in state by means of a photochemical reaction as a result of multiphoton absorption.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 14, 2022
    Applicant: Medizinishce Universitat Wien
    Inventors: Aleksandr OVSIANIKOV, Peter GRUBER, Christian WINDISCHBERGER, Zoltan NAGY
  • Patent number: 9924889
    Abstract: A method for transcranial magnetic stimulation (TMS) of a stimulation area of medical interest, combined with functional magnetic resonance imaging (fMRI) for visualization of the response of, for example neurons, is disclosed. An ultra-thin magnetic resonance coil, MR coil, positioned in the immediate vicinity over an area where the response of, for example neurons, is to be detected, and preferably sandwiched between the TMS coil and the area, provides an excellent signal-to-noise ratio. The TMS can be performed directly through the MR coil. A great deal of flexibility in the number of the TMS and MR coils in use and their spatial arrangement is provided. A corresponding system for the TMS/fMRI studies is also provided.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 27, 2018
    Assignee: MEDICAL UNIVERSITY OF VIENNA
    Inventors: Lucia Isabel Navarro de Lara, Christian Windischberger, Elmar Laistler, Jürgen Sieg, Ewald Moser, André Kühne
  • Publication number: 20150099963
    Abstract: A method for transcranial magnetic stimulation (TMS) of a stimulation area of medical interest, combined with functional magnetic resonance imaging (fMRI) for visualization of the response of, for example neurons, is disclosed. An ultra-thin magnetic resonance coil, MR coil, positioned in the immediate vicinity over an area where the response of, for example neurons, is to be detected, and preferably sandwiched between the TMS coil and the area, provides an excellent signal-to-noise ratio. The TMS can be performed directly through the MR coil. A great deal of flexibility in the number of the TMS and MR coils in use and their spatial arrangement is provided. A corresponding system for the TMS/fMRI studies is also provided.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: Medical University of Vienna
    Inventors: Lucia Isabel Navarro de Lara, Christian Windischberger, Elmar Laistler, Jürgen Sieg, Ewald Moser, André Kühne