Patents by Inventor Christine Lynne Pitner

Christine Lynne Pitner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10494627
    Abstract: A system for extracting material from a region of interest includes a fluid delivery base comprising an inlet channel and an outlet channel formed within the fluid delivery base, a gasket affixed to the fluid delivery base, wherein the gasket comprises at least one opening exposing an open end of the inlet channel and an open end of the outlet channel; a support comprising a sample-supporting surface facing the gasket and an opposing surface; and an alignment member coupled to the opposing surface in a fixed position and such that the support is positioned between the fluid delivery base and the alignment member, wherein one or both of the alignment member or the fluid delivery base are biased towards one another by a force (e.g., a magnet or spring force) and wherein the fluid delivery base is separable from the support and configured to move along a plane of the sample-supporting surface to align with the alignment member.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: December 3, 2019
    Assignee: General Electric Company
    Inventors: John Richard Nelson, Wei Gao, Christopher Michael Puleo, Todd Frederick Miller, Christine Lynne Pitner, David Andrew Shoudy, Alex David Corwin
  • Patent number: 9797767
    Abstract: Approaches are disclosed for calibrating a plurality of imaging devices, such as microscopes. In certain implementations, a calibration plate is employed that include a variety of calibration features. Imaging devices calibrated in accordance with the present approaches may be used to generate images having consistent attributes, such as brightness, regardless of which imaging device is employed.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: October 24, 2017
    Assignee: General Electric Company
    Inventors: Alex David Corwin, Christine Lynne Pitner, David Andrew Shoudy, Kevin Bernard Kenny
  • Publication number: 20170175105
    Abstract: A system for extracting material from a region of interest includes a fluid delivery base comprising an inlet channel and an outlet channel formed within the fluid delivery base, a gasket affixed to the fluid delivery base, wherein the gasket comprises at least one opening exposing an open end of the inlet channel and an open end of the outlet channel; a support comprising a sample-supporting surface facing the gasket and an opposing surface; and an alignment member coupled to the opposing surface in a fixed position and such that the support is positioned between the fluid delivery base and the alignment member, wherein one or both of the alignment member or the fluid delivery base are biased towards one another by a force (e.g., a magnet or spring force) and wherein the fluid delivery base is separable from the support and configured to move along a plane of the sample-supporting surface to align with the alignment member.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: John Richard Nelson, Wei Gao, Christopher Michael Puleo, Todd Frederick Miller, Christine Lynne Pitner, David Andrew Shoudy, Alex David Corwin
  • Patent number: 9625355
    Abstract: A system for extracting material from a region of interest includes a fluid delivery base comprising an inlet channel and an outlet channel formed within the fluid delivery base; a gasket affixed to the fluid delivery base, wherein the gasket comprises at least one opening exposing an open end of the inlet channel and an open end of the outlet channel; a support comprising a sample-supporting surface facing the gasket and an opposing surface; and an alignment member coupled to the opposing surface in a fixed position and such that the support is positioned between the fluid delivery base and the alignment member, wherein one or both of the alignment member or the fluid delivery base are biased towards one another by a force (e.g., a magnet or spring force) and wherein the fluid delivery base is separable from the support and configured to move along a plane of the sample-supporting surface to align with the alignment member.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: April 18, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: John Richard Nelson, Wei Gao, Christopher Michael Puleo, Todd Frederick Miller, Christine Lynne Pitner, David Andrew Shoudy, Alex David Corwin
  • Patent number: 9581800
    Abstract: The invention provides a slide holder that utilizes edge detection algorithms to determine the location of various edges of a slide. From these edges, and integrating characteristic slide dimension, both linear offset of the edge of the slide in the holder and any rotation of the slide relative to the microscope stage axis are determined. The process of using the slide holder of the invention ensures precise and accurate placement of a slide during a first round of imaging and for reload in subsequent rounds.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 28, 2017
    Assignee: General Electric Company
    Inventors: Alex David Corwin, Kevin Bernard Kenny, Christine Lynne Pitner
  • Publication number: 20160153868
    Abstract: A system for extracting material from a region of interest includes a fluid delivery base comprising an inlet channel and an outlet channel formed within the fluid delivery base; a gasket affixed to the fluid delivery base, wherein the gasket comprises at least one opening exposing an open end of the inlet channel and an open end of the outlet channel; a support comprising a sample-supporting surface facing the gasket and an opposing surface; and an alignment member coupled to the opposing surface in a fixed position and such that the support is positioned between the fluid delivery base and the alignment member, wherein one or both of the alignment member or the fluid delivery base are biased towards one another by a force (e.g., a magnet or spring force) and wherein the fluid delivery base is separable from the support and configured to move along a plane of the sample-supporting surface to align with the alignment member.
    Type: Application
    Filed: December 1, 2014
    Publication date: June 2, 2016
    Inventors: John Richard Nelson, Wei Gao, Christopher Michael Puleo, Todd Frederick Miller, Christine Lynne Pitner, David Andrew Shoudy, Alex David Corwin
  • Publication number: 20160147056
    Abstract: The invention provides a slide holder that utilizes edge detection algorithms to determine the location of various edges of a slide. From these edges, and integrating characteristic slide dimension, both linear offset of the edge of the slide in the holder and any rotation of the slide relative to the microscope stage axis are determined. The process of using the slide holder of the invention ensures precise and accurate placement of a slide during a first round of imaging and for reload in subsequent rounds.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 26, 2016
    Inventors: Alex David Corwin, Kevin Bernard Kenny, Christine Lynne Pitner
  • Publication number: 20160061654
    Abstract: Approaches are disclosed for calibrating a plurality of imaging devices, such as microscopes. In certain implementations, a calibration plate is employed that include a variety of calibration features. Imaging devices calibrated in accordance with the present approaches may be used to generate images having consistent attributes, such as brightness, regardless of which imaging device is employed.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 3, 2016
    Inventors: Alex David Corwin, Christine Lynne Pitner, David Andrew Shoudy, Kevin Bernard Kenny
  • Patent number: 9150907
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. The fluidic connectors are thin film fluidic connectors capable of connecting to a fluid delivery system. The subassembly may be sealed against a solid support to form a flow cell. Methods of use are also disclosed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: October 6, 2015
    Assignee: General Electric Company
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Publication number: 20150198580
    Abstract: The invention provides a coverslip for automated decoverslipping of a tissue bearing slide comprising a horizontal base portion having a length, width, and height, at least two side wall portions extending downward from opposite sides of the base portion each having a length and width and h; and wherein the total wall volume to base volume ratio is greater than or equal to approximately 0.025.
    Type: Application
    Filed: January 13, 2014
    Publication date: July 16, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Brian James Grimmond, Brian Christopher Bales, Alex David Corwin, Adriana Ines Larriera Moreno, Christine Lynne Pitner
  • Patent number: 9080941
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: July 14, 2015
    Assignee: General Electric Company
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Publication number: 20140248617
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.
    Type: Application
    Filed: May 14, 2014
    Publication date: September 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Publication number: 20140248618
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. The fluidic connectors are thin film fluidic connectors capable of connecting to a fluid delivery system. The subassembly may be sealed against a solid support to form a flow cell. Methods of use are also disclosed.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner