Patents by Inventor Christine Sung-An Hau-Riege

Christine Sung-An Hau-Riege has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11508725
    Abstract: A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect and a second interconnect. The first interconnect is on an interconnect level extending in a length direction to connect the PMOS drains together, and the second interconnect is on the interconnect level extending in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level physically couple the first interconnect and the second interconnect to an output of the CMOS device. A third interconnect on the interconnect level extends perpendicular to the length direction and offset from the set of interconnects. The third interconnect is capable of flowing current from the PMOS drains or from the NMOS drains to the output of the CMOS device.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 22, 2022
    Assignee: QUALCOMM INCORPORATED
    Inventors: Seid Hadi Rasouli, Michael Joseph Brunolli, Christine Sung-An Hau-Riege, Mickael Malabry, Sucheta Kumar Harish, Prathiba Balasubramanian, Kamesh Medisetti, Nikolay Bomshtein, Animesh Datta, Ohsang Kwon
  • Publication number: 20200168604
    Abstract: A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect and a second interconnect. The first interconnect is on an interconnect level extending in a length direction to connect the PMOS drains together, and the second interconnect is on the interconnect level extending in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level physically couple the first interconnect and the second interconnect to an output of the CMOS device. A third interconnect on the interconnect level extends perpendicular to the length direction and offset from the set of interconnects. The third interconnect is capable of flowing current from the PMOS drains or from the NMOS drains to the output of the CMOS device.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Seid Hadi RASOULI, Michael Joseph BRUNOLLI, Christine Sung-An HAU-RIEGE, Mickael MALABRY, Sucheta Kumar HARISH, Prathiba BALASUBRAMANIAN, Kamesh MEDISETTI, Nikolay BOMSHTEIN, Animesh DATTA, Ohsang KWON
  • Patent number: 10600785
    Abstract: A CMOS device with a plurality of PMOS transistors and a plurality of NMOS transistors includes a first interconnect and a second interconnect on an interconnect level connecting a first subset and a second subset of PMOS drains together, respectively. The first and second subsets are different and the first and second interconnect are disconnected on the interconnect level. A third interconnect and a fourth interconnect on the interconnect level connect a first subset and a second subset of the NMOS drains together, respectively. The third interconnect and the fourth interconnect are disconnected on the interconnect level. The first, second, third, fourth interconnects are coupled together through at least one other interconnect level. Additional interconnects on the interconnect level connect the first and third interconnects together, and the second and fourth interconnects together, to provide parallel current paths with a current path through the at least one other interconnect level.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: March 24, 2020
    Assignee: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Michael Joseph Brunolli, Christine Sung-An Hau-Riege, Mickael Malabry, Sucheta Kumar Harish, Prathiba Balasubramanian, Kamesh Medisetti, Nikolay Bomshtein, Animesh Datta, Ohsang Kwon
  • Patent number: 9972624
    Abstract: A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect on an interconnect level extending in a length direction to connect the PMOS drains together. A second interconnect on the interconnect level extends in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level couple the first interconnect and the second interconnect together. A third interconnect on the interconnect level extends perpendicular to the length direction and is offset from the set of interconnects to connect the first interconnect and the second interconnect together.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: May 15, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Seid Hadi Rasouli, Michael Joseph Brunolli, Christine Sung-An Hau-Riege, Mickael Malabry, Sucheta Kumar Harish, Prathiba Balasubramanian, Kamesh Medisetti, Nikolay Bomshtein, Animesh Datta, Ohsang Kwon
  • Patent number: 9941156
    Abstract: Devices and methods to reduce parasitic capacitance are disclosed. A device may include a dielectric layer. The device may include first and second conductive structures and an etch stop layer proximate to the dielectric layer. The etch stop layer may define first and second openings proximate to a region of the dielectric layer between the first and second conductive structures. The device may include first and second airgaps within the region. The device may include a layer of material proximate to (e.g., on, above, or over) the etch stop layer. The layer of material proximate to the etch stop layer may cover the first and second airgaps.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: April 10, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Vidhya Ramachandran, Christine Sung-An Hau-Riege, John Jianhong Zhu, Jeffrey Junhao Xu, Jihong Choi, Jun Chen, Choh Fei Yeap
  • Publication number: 20160293475
    Abstract: Devices and methods to reduce parasitic capacitance are disclosed. A device may include a dielectric layer. The device may include first and second conductive structures and an etch stop layer proximate to the dielectric layer. The etch stop layer may define first and second openings proximate to a region of the dielectric layer between the first and second conductive structures. The device may include first and second airgaps within the region. The device may include a layer of material proximate to (e.g., on, above, or over) the etch stop layer. The layer of material proximate to the etch stop layer may cover the first and second airgaps.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 6, 2016
    Inventors: Shiqun Gu, Vidhya Ramachandran, Christine Sung-An Hau-Riege, John Jianhong Zhu, Jeffrey Junhao Xu, Jihong Choi, Jun Chen, Choh Fei Yeap
  • Patent number: 9171782
    Abstract: Some implementations provide a semiconductor device (e.g., die) that includes a substrate, several metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the plurality of metal layers, a first metal redistribution layer coupled to the pad, and a second metal redistribution layer coupled to the first metal redistribution layer. The second metal redistribution layer includes a cobalt tungsten phosphorous material. In some implementations, the first metal redistribution layer is a copper layer. In some implementations, the semiconductor device further includes a first underbump metallization (UBM) layer and a second underbump metallization (UBM) layer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: October 27, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Christine Sung-An Hau-Riege, You-Wen Yau, Kevin Patrick Caffey, Lizabeth Ann Keser, Gene Hyde McAllister, Reynante Tamunan Alvarado, Steve Joseph Bezuk, Damion Bryan Gastelum
  • Publication number: 20150054568
    Abstract: A CMOS device with a plurality of PMOS transistors each having a PMOS drain and a plurality of NMOS transistors each having an NMOS drain includes a first interconnect on an interconnect level extending in a length direction to connect the PMOS drains together. A second interconnect on the interconnect level extends in the length direction to connect the NMOS drains together. A set of interconnects on at least one additional interconnect level couple the first interconnect and the second interconnect together. A third interconnect on the interconnect level extends perpendicular to the length direction and is offset from the set of interconnects to connect the first interconnect and the second interconnect together.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: QUALCOMM INCORPORATED
    Inventors: Seid Hadi RASOULI, Michael Joseph BRUNOLLI, Christine Sung-An HAU-RIEGE, Mickael MALABRY, Sucheta Kumar HARISH, Prathiba BALASUBRAMANIAN, Kamesh MEDISETTI, Nikolay BOMSHTEIN, Animesh DATTA, Ohsang KWON
  • Publication number: 20150041982
    Abstract: Some implementations provide a semiconductor device (e.g., die) that includes a substrate, several metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the plurality of metal layers, a first metal redistribution layer coupled to the pad, and a second metal redistribution layer coupled to the first metal redistribution layer. The second metal redistribution layer includes a cobalt tungsten phosphorous material. In some implementations, the first metal redistribution layer is a copper layer. In some implementations, the semiconductor device further includes a first underbump metallization (UBM) layer and a second underbump metallization (UBM) layer.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Christine Sung-An Hau-Riege, You-Wen Yau, Kevin Patrick Caffey, Lizabeth Ann Keser, Gene H. McAllister, Reynante Tamunan Alvarado, Steve J. Bezuk, Damion Bryan Gastelum