Patents by Inventor Christoph D. Karp

Christoph D. Karp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190264338
    Abstract: A solar fuels generation system includes a first reactor that contains a first solution in which a charge carrier is reduced to a reduced charge carrier. The system also includes a second reactor that contains a second solution in which the reduced charge carrier reduces protons so as to generate hydrogen gas.
    Type: Application
    Filed: February 26, 2019
    Publication date: August 29, 2019
    Inventors: Christoph D. Karp, Alec S. Ho, Xinghao Zhou, Chengxiang Xiang, Nathan S. Lewis
  • Patent number: 7261812
    Abstract: Chromatographic separation devices include multiple batch-processed columns joined by a body structure and adapted to perform parallel analyses. Both slurry-packed and monolithic column embodiments are provided. One or more liquid-permeable frits of various types may be used to retain stationary phase material within columns. A fluidic distribution network may be used to distribute stationary phase material and/or mobile phase solvents to multiple columns. Separation devices, including microfluidic embodiments, may be fabricated with various materials including polymers. Multi-column fabrication and separation methods are provided.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 28, 2007
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Joseph F. Covington, Matthew M. Gregori, Steven E. Hobbs, Jeffrey A. Koehler, Stephen D. O'Connor, Paren P. Patel, Scott G. Beach
  • Patent number: 7077152
    Abstract: Systems and methods for metering microfluidic volumes are provided. A discrete plug may be separated from a larger volume of first fluid by injecting a second fluid, such as a gas, into a channel containing the first fluid. The injection of the second fluid to isolate the desired amount of the first fluid may be controlled through timing of flows, visual indicators and/or automated control systems using optical or electrical sensors.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: July 18, 2006
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 7074327
    Abstract: Systems and methods are provided for preparing samples for chromatographic separations and then chromatographically separating the prepared samples, preferably in a high-throughput fashion utilizing multiple parallel first (fluid) processing regions in fluid communication with multiple parallel second (fluid) processing regions wherein the each second processing region includes a chromatography column. One or more common fluid supplies may be utilized in each of the sample preparation and separation steps to minimize the number of requisite fluid connections and external components such as pumps, reservoirs, pulse dampers, flow controllers, and the like.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: July 11, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp, Mike S. Lee, Surekha Vajjhala
  • Patent number: 7028536
    Abstract: A threadless interface for a fluidic system includes a microfluidic device having an outer surface and an internal near-surface channel having a first width and disposed at a first depth relative to the outer surface, with the first width being less than about two times the first depth. A fluidic seal engages the outer surface and exerts an elevated contact pressure against at least a portion of the outer surface without substantially occluding the channel. A preferred seal includes a raised boss. A fault tolerant flow path design can accommodate misalignment between adjacent device layers without detrimentally affecting fluid flow capability. The interface may be used in a microfluidic system for performing parallel analyses such as high performance liquid chromatography.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: April 18, 2006
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Marci Pezzuto, Steven E. Hobbs
  • Patent number: 7027683
    Abstract: Fluidic systems, including microfluidic systems, are used to manipulate light by light-fluid interaction so as to affect reflection, refraction, absorption, optical filtering, or scattering of the beam. One or more fluids may be provided to a channel or chamber and exposed to an incident beam, and the proportion of at least one of a plurality of fluids may be varied. Light may interact with a discrete fluid plug subject to movement within a channel. One or more flexible members may be employed, such as to provide a variable lens. Fluidic optical devices may be used in applications including optical switching, optical filtering, or optical processing. Multiplexed fluidic optical systems are further provided.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: April 11, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp
  • Patent number: 7010964
    Abstract: Microfluidic analytical devices and systems have at least one porous element disposed downstream of one or more optical detection regions in a pressure-based separation system. A porous element elevates the backpressure within an optical detection region, thus suppressing bubble formation and enhancing optical detection. Various types of porous elements include porous membranes, packed particulate material, and polymerized monoliths. Preferred devices may be fabricated with substantially planar device layers, including stencil layers, that are directly bonded without adhesives to form a substantially sealed microstructure suitable for performing pressure-based chromatographic separations at elevated operating pressures and with organic solvents.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: March 14, 2006
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Paren P. Patel
  • Patent number: 6981522
    Abstract: Microfluidic devices having a plurality of functional features for performing one or more fluidic operations in parallel are provided. Reagents, samples or other fluids common to multiple functional features (“common fluids”) may be input into a microfluidic device or system through one or more distributing inputs that divide and distribute the common fluids as desired. The use of a multi-layer fabrication technique allows multiple distributing inputs to distribute to multiple functional features in a microfluidic device without undesirable fluid channel intersections.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 3, 2006
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Eugene Dantsker
  • Patent number: 6935772
    Abstract: Microfluidic devices capable of efficiently mixing two or more fluid are provided. Two or more microfluidic inlet channels defined in different sheets of material meet at an overlap region in fluid communication with an outlet channel. The channels are defined through the entire thickness of stencil sheets. The overlap region may include an aperture-defining spacer layer, and/or an impedance element, such as a porous membrane, adapted to distribute at least one fluid across the entire width of the outlet channel to promote reliable fluid mixing.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: August 30, 2005
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Paren P. Patel
  • Patent number: 6923907
    Abstract: Pressure-driven microfluidic separation devices, such as may be used for performing high performance liquid chromatography, are provided. Multiple separation columns may be defined in a single device and packed with stationary phase material retained by porous frits. One or more splitters may be provided to distribute slurry and/or mobile phase among multiple separation columns. In one embodiment, separation devices are substantially planar and fabricated with multiple device layers. Systems and methods employing slurry for packing separation devices are also provided.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: August 2, 2005
    Assignee: Nanostream, Inc.
    Inventors: Steven E. Hobbs, Matthew M. Gregori, Christoph D. Karp, Jeffrey A. Koehler, Paren P. Patel, Joseph F. Covington
  • Patent number: 6919046
    Abstract: Modular microfluidic systems includes a plurality of microfluidic modules, each capable of performing fluidic operations including, but not limited to, filtering, splitting, regulating pressure, mixing, metering, reacting, diverting, heating, cooling, and condensing are provided. The microfluidic modules are polymeric, stencil-based structures adapted to be coupled in sequence for performing biological or chemical synthesis, including, but not limited to, chemical and biological syntheses of organic, polymer, inorganic, oligonucleotide, peptide, protein, bacteria, and enzymatic products.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: July 19, 2005
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Marci Pezzuto, Courtney Coyne, Steven E. Hobbs, Eugene Dantsker
  • Patent number: 6890093
    Abstract: Robust microfluidic mixing devices mix multiple fluid streams passively, without the use of moving parts. In one embodiment, these devices contain microfluidic channels that are formed in various layers of a three-dimensional structure. Mixing may be accomplished with various manipulations of fluid flow paths and/or contacts between fluid streams. In various embodiments, structures such as channel overlaps, slits, converging/diverging regions, turns, and/or apertures may be designed into a mixing device. Mixing devices may be rapidly constructed and prototyped using a stencil construction method in which channels are cut through the entire thickness of a material layer, although other construction methods including surface micromachining techniques may be used.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: May 10, 2005
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Joseph F. Covington
  • Patent number: 6880576
    Abstract: Microfluidic devices with multiple fluid process regions for subjecting similar samples to different process conditions in parallel are provided. One or more common fluid inputs may be provided to minimize the number of external fluid supply components. Solid materials such as chromatographic separation media or catalyst media is preferably provided in each fluid process region. Solid materials may be supplied to the devices in the form of slurry, with particles retained by porous elements or frits. Different fluid process regions may having different effective lengths, different solid material types or amounts, or may receive different ratios of common fluids supplied to the device. The flow resistances of dissimilar fluid process regions may be balanced passively with the addition of impedance elements in series with each fluid process region.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 19, 2005
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Eugene Dantsker
  • Patent number: 6877892
    Abstract: Robust microfluidic mixing devices mix multiple fluid streams passively, without the use of moving parts. In one embodiment, these devices contain microfluidic channels that are formed in various layers of a three-dimensional structure. Mixing may be accomplished with various manipulations of fluid flow paths and/or contacts between fluid streams. In various embodiments, structures such as channel overlaps, slits, converging/diverging regions, turns, and/or apertures may be designed into a mixing device. Mixing devices may be rapidly constructed and prototyped using a stencil construction method in which channels are cut through the entire thickness of a material layer, although other construction methods including surface micromachining techniques may be used.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: April 12, 2005
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp
  • Patent number: 6845787
    Abstract: A splitter for multi-layer microfluidic devices is provided. The splitter includes multiple forked channels defined in two or more device layers. The forked channels communicate fluidically at overlap regions. The overlap regions, in combination with symmetrical channel geometries balance the fluidic impedance in the system and promote even splitting.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 25, 2005
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Adrian Hightower
  • Patent number: 6827095
    Abstract: A modular microfluidic system includes a plurality of discrete microfluidic modules each capable of performing at least one operation and at least one microfluidic coupling device for fluidically coupling the modules to perform a sequence of operations. The microfluidic modules and coupling devices may be constructed according to various techniques. In one embodiment, coupling devices are fabricated from multiple layers and each include a fluidic inlet port, a fluidic outlet port, and at least one sandwiched stencil layer having a microfluidic channel formed therein. Also described are integrated microfluidic systems and methods capable of performing various sequences of operations.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: December 7, 2004
    Assignee: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Christoph D. Karp, Eugene Dantsker, Marci Pezzuto
  • Publication number: 20040238052
    Abstract: Microfluidic devices with multiple fluid process regions for subjecting similar samples to different process conditions in parallel are provided. One or more common fluid inputs may be provided to minimize the number of external fluid supply components. Solid materials such as chromatographic separation media or catalyst media is preferably provided in each fluid process region. Solid materials may be supplied to the devices in the form of slurry, with particles retained by porous elements or frits. Different fluid process regions may having different effective lengths, different solid material types or amounts, or may receive different ratios of common fluids supplied to the device. The flow resistances of dissimilar fluid process regions may be balanced passively with the addition of impedance elements in series with each fluid process region.
    Type: Application
    Filed: May 3, 2004
    Publication date: December 2, 2004
    Applicant: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Eugene Dantsker
  • Publication number: 20040226884
    Abstract: Systems and methods are provided for preparing samples for chromatographic separations and then chromatographically separating the prepared samples, preferably in a high-throughput fashion utilizing multiple parallel first (fluid) processing regions in fluid communication with multiple parallel second (fluid) processing regions wherein the each second processing region includes a chromatography column. One or more common fluid supplies may be utilized in each of the sample preparation and separation steps to minimize the number of requisite fluid connections and external components such as pumps, reservoirs, pulse dampers, flow controllers, and the like.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 18, 2004
    Applicant: Nanostream, Inc.
    Inventors: Stephen D. O'Connor, Eugene Dantsker, Christoph D. Karp, Mike S. Lee, Surekha Vajjhala
  • Patent number: 6814938
    Abstract: Non-planar microfluidic devices and methods for transferring fluids between vessels and microfluidic devices are provided. The devices may be contoured to physically contact non-planar vessels, such as pipes, tubes, vials, or syringes to establish fluid communication between a vessel and a microfluidic device. Devices according to the invention may be constructed from flexible, rigid, or combinations of flexible and rigid materials. In certain embodiments, microfluidic devices are composed of sandwiched stencils, and self-adhesive tapes may be used for one or more layers. A microfluidic device may be removably attached to a vessel with a non-permanent adhesive or adhesive layer. Continuously wrapped microfluidic devices fashioned from a single layer, in addition to rewindable microfluidic devices constructed from multiple layers, are provided. A multi-plunger syringe permits a microfluidic device or other reservoir coupled to the vessel to be filled on the draw stroke of the syringe plunger.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: November 9, 2004
    Assignee: Nanostream, Inc.
    Inventors: Christoph D. Karp, Stephen D. O'Connor, Vincent K. Gustafson
  • Patent number: 6811695
    Abstract: Multi-layer microfluidic devices incorporating a filter element are provided. A filter element is compressively restrained between device layers, such that the compression promotes a tight seal between device layers and resists fluid leakage around the filter element.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: November 2, 2004
    Assignee: Nanostream, Inc.
    Inventor: Christoph D. Karp