Patents by Inventor Christoph Schranz

Christoph Schranz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230233781
    Abstract: A ventilation device for artificial ventilation, having: —a ventilation gas source; —a ventilation conducting assembly for conducting inspiratory ventilation gas from the ventilation gas source to a patient-side, proximal ventilation-gas outlet opening and for conducting expiratory ventilation gas away from a proximal ventilation-gas inlet opening; —a pressure-changing assembly for changing the pressure of the ventilation gas flowing in the ventilation conducting assembly; —a control device, which is designed to control the operation of the ventilation gas source and/or the operation of the pressure-changing assembly; —an evaluation device for processing sensor signals; and —an O2 sensor assembly for determining an O2 concentration value representing the oxygen concentration of the ventilation gas flowing in the ventilation conducting assembly, wherein the O2 sensor assembly outputs O2 sensor signals, which contain information regarding the O2 concentration value, to the evaluation device, and wherein the eva
    Type: Application
    Filed: May 5, 2021
    Publication date: July 27, 2023
    Inventors: Christoph Schranz, Jonathan Schad, Dominik Novotni, Bernd Offenbeck
  • Patent number: 11668649
    Abstract: A sensor arrangement includes a reaction subassembly having a housing and a detector subassembly. The housing is a layered component arrangement encompassing a luminophore-containing reaction laminate excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate emitting an infrared radiation. The housing includes an opening for introducing a fluid, a reaction window and a temperature-sensing window. The reaction window transmits the first and second electromagnetic radiation, and the temperature-sensing window is penetrable by infrared radiation.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: June 6, 2023
    Assignee: HAMILTON BONADUZ AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Publication number: 20220401670
    Abstract: A ventilation device for artificially ventilating a patient, the controller of the ventilation device being designed to actuate a flow modifying device for carrying out a P/V maneuver, in which a patient is supplied with respiratory gas while the pressure of the respiratory gas is increased during an inspiration phase, said respiratory gas passively flowing out of the patient during an expiration phase after the pressure increase is terminated.
    Type: Application
    Filed: October 28, 2020
    Publication date: December 22, 2022
    Inventors: Sascha Reidt, Christoph Schranz, Dominik Novotni
  • Publication number: 20220305226
    Abstract: A multi-channel infrared gas sensor including a beam splitter arrangement, which splits an infrared beam into four infrared partial beams, four bandpass filters and four infrared sensors, respectively one for each infrared partial beam at a first used signal wavelength. The directions of propagation of the four infrared partial beams differ from one another in pairwise fashion. A first and second infrared used signal sensor are arranged so that respective used signal sensor detection areas have a symmetric orientation with respect to a used signal sensor plane of symmetry situated between the detection areas. A first and second infrared reference signal sensor are arranged so that respective reference signal sensor detection areas have a symmetric orientation with respect to a reference signal sensor plane of symmetry situated between the reference signal sensor detection areas. No signal sensor detection area is orthogonal to its respective signal sensor plane of symmetry.
    Type: Application
    Filed: April 27, 2020
    Publication date: September 29, 2022
    Applicant: HAMILTON MEDICAL AG
    Inventors: Christoph Schranz, Dominik Novotni
  • Publication number: 20220291117
    Abstract: A measurement cuvette for detecting at least one fluid constituent of a fluid flowing through the measurement cuvette by means of electromagnetic radiation, includes: a channel, which extends through the measurement cuvette along a channel path extending centrally through the channel; a coupling and detection portion, which extends, between its first longitudinal end and its second longitudinal end, along a linear longitudinal axis, detachably mechanically coupled to a radiation component; a physical orientation structure, which allows detachable mechanical coupling of the measurement cuvette to the radiation component in a predefined desired relative orientation and prevents the detachable mechanical coupling in an undesired relative orientation. The physical orientation structure is arranged and formed between the first and the second longitudinal ends of the coupling and detection portion.
    Type: Application
    Filed: September 8, 2020
    Publication date: September 15, 2022
    Applicant: HAMILTON MEDICAL AG
    Inventors: Felix Breitruck, Jürg Roffler, Marie-Kristin Schreiber, Christoph Schranz
  • Publication number: 20220268695
    Abstract: A sensor arrangement includes a reaction subassembly having a housing and a detector subassembly. The housing is a layered component arrangement encompassing a luminophore-containing reaction laminate excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate emitting an infrared radiation. The housing includes an opening for introducing a fluid, a reaction window and a temperature-sensing window. The reaction window transmits the first and second electromagnetic radiation, and the temperature-sensing window is penetrable by infrared radiation.
    Type: Application
    Filed: July 8, 2021
    Publication date: August 25, 2022
    Applicant: Hamilton Bonaduz AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Publication number: 20220265945
    Abstract: A non-dispersive multi-channel radiation sensor assembly includes a beamsplitter assembly, a first band-pass filter, which has a predefined first bandwidth and has a transmission maximum at a predefined first useful-signal wavelength, a first measurement-radiation useful-signal sensor, which is arranged downstream of the first band-pass filter in the beam path, a second band-pass filter, which has a transmission maximum at a predefined first reference-signal wavelength, a first measurement-radiation reference-signal sensor, which is arranged downstream of the second band-pass filter in the beam path. The beamsplitter assembly has a first irradiation region and a second irradiation region, in which irradiation regions the beamsplitter assembly is irradiated with measurement radiation.
    Type: Application
    Filed: July 15, 2020
    Publication date: August 25, 2022
    Applicant: HAMILTON MEDICAL AG
    Inventors: Christoph Schranz, Dominik Novotni, Bernd Offenbeck
  • Publication number: 20220257141
    Abstract: A method for determining the functional residual capacity of a patient's lung, includes supplying a first inspiratory breathing gas having a first proportion of a metabolically inert gas, supplying a second inspiratory breathing gas having a second proportion of the metabolically inert gas, determining any arising volume difference, which represents a difference in volume between a volume of inspiratory and of expiratory metabolically inert gas for a determination period, determining the functional residual capacity taking into account the volume difference and a proportion difference between a first proportion quantity and a second proportion quantity, which represent the first proportion and the second proportion of the metabolically inert gas, respectively, and determining a base difference, which represents a difference between a tidal volume of inspiratory metabolically inert gas and of expiratory metabolically inert gas.
    Type: Application
    Filed: July 15, 2020
    Publication date: August 18, 2022
    Applicant: HAMILTON MEDICAL AG
    Inventors: Thomas Laubscher, Christoph Schranz, Dominik Novotni, Sascha Reidt
  • Patent number: 11119036
    Abstract: A sensor arrangement (50) encompasses a reaction subassembly (72) having a housing (52) and having a detector subassembly (54), there being provided in the housing (52) a layered component arrangement (60) that encompasses: a luminophore-containing reaction laminate (62) that is excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate (64) emitting an infrared radiation; the housing (52) comprising an opening (78a, 78b) through which a fluid is introducible; the housing (52) comprising a reaction window (66a) and a temperature-sensing window (66b) arranged physically remotely therefrom; the one reaction window (66a) transmitting the first (E1) and the second electromagnetic radiation (E2); and the temperature-sensing window (66b) being penetrable by infrared radiation (I); the detector subassembly (54) encompassing: a radiation source (
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 14, 2021
    Assignee: HAMILTON BONADUZ AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Patent number: 10905838
    Abstract: The present artificial respiration ventilator (10) comprises, inter alia, a flow sensor arrangement (44, 48) for quantitatively detecting a gas flow in a breathing line arrangement (30), comprising a distal flow sensor (48) located farther from the patient end of the ventilation line arrangement (30). and a proximal flow sensor (44) located closer to the patient end of the ventilation line arrangement (30), and has a control device (18) at least for processing measurement signals of the flow sensor arrangement (44, 48), wherein the control device (18) is designed for error detection based on the measurement signals of the distal (48) and/or the proximal sensor (44).
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: February 2, 2021
    Assignee: Hamilton Medical AG
    Inventors: Christoph Schranz, Karolin Franke, Dominik Novotni
  • Publication number: 20200282163
    Abstract: The invention relates to a ventilator including a ventilation gas source, a ventilation tube assembly, a valve assembly, a flow sensor assembly comprising a distal flow sensor and a proximal flow sensor, a pressure sensor assembly for quantitatively detecting a gas pressure in the ventilation tube assembly a pressure-changing assembly for changing the gas pressure in the ventilation tube assembly and a control device which is designed at least to control the operation of the pressure-changing assembly on the basis of measurement signals from the proximal flow sensor, and on the basis of measurement signals from the proximal flow sensor and from the distal flow sensor, to infer the existence of a fault.
    Type: Application
    Filed: September 24, 2018
    Publication date: September 10, 2020
    Applicant: Hamilton Medical AG
    Inventors: Christoph Schranz, Dominik Wolf, Dominik Novotni
  • Publication number: 20200072738
    Abstract: A sensor arrangement (50) encompasses a reaction subassembly (72) having a housing (52) and having a detector subassembly (54), there being provided in the housing (52) a layered component arrangement (60) that encompasses: a luminophore-containing reaction laminate (62) that is excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate (64) emitting an infrared radiation; the housing (52) comprising an opening (78a, 78b) through which a fluid is introducible; the housing (52) comprising a reaction window (66a) and a temperature-sensing window (66b) arranged physically remotely therefrom; the one reaction window (66a) transmitting the first (E1) and the second electromagnetic radiation (E2); and the temperature-sensing window (66b) being penetrable by infrared radiation (I); the detector subassembly (54) encompassing: a radiation source (
    Type: Application
    Filed: March 6, 2018
    Publication date: March 5, 2020
    Applicants: Hamilton Medical AG, Hamilton Bonaduz AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Publication number: 20190192796
    Abstract: The present artificial respiration ventilator (10) comprises, inter alia, a flow sensor arrangement (44, 48) for quantitatively detecting a gas flow in a breathing line arrangement (30), comprising a distal flow sensor (48) located farther from the patient end of the ventilation line arrangement (30). and a proximal flow sensor (44) located closer to the patient end of the ventilation line arrangement (30), and has a control device (18) at least for processing measurement signals of the flow sensor arrangement (44, 48), wherein the control device (18) is designed for error detection based on the measurement signals of the distal (48) and/or the proximal sensor (44).
    Type: Application
    Filed: September 1, 2016
    Publication date: June 27, 2019
    Applicant: Hamilton Medical AG
    Inventors: Christoph Schranz, Karolin Franke, Dominik Novotni