Patents by Inventor Christopher C. Souchuns

Christopher C. Souchuns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7010284
    Abstract: A multi-stage amplifier is coupled with a power detector. The multi-stage amplifier includes a plurality of amplifier stages in series, with a signal path extending through them. The power detector is coupled to an interior node of the amplifier along the signal path, and is operable to sample a first signal being transmitted on the signal path. The power detector outputs a second signal reflective of a power of the first signal. In one embodiment, the interior node is in a matching network of the amplifier disposed between a first amplifier stage and a final amplifier stage of the amplifier. The second signal may be used in a feedback network to adjust an amount of amplification of the first signal by the amplifier.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: March 7, 2006
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Li Liu, Christopher C. Souchuns, Ping Li, Gregory N. Henderson
  • Patent number: 6989712
    Abstract: A multi-stage amplifier is coupled with a power detector. The multi-stage amplifier includes a plurality of amplifier stages in series, with a signal path extending through them. The power detector is coupled to an interior node of the amplifier along the signal path, and is operable to sample a first signal being transmitted on the signal path. The power detector outputs a second signal reflective of a power of the first signal. In one embodiment, the interior node is in a matching network of the amplifier disposed between a first amplifier stage and a final amplifier stage of the amplifier. The second signal may be used in a feedback network to adjust an amount of amplification of the first signal by the amplifier.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: January 24, 2006
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Li Liu, Christopher C. Souchuns, Ping Li, Gregory N. Henderson
  • Publication number: 20040174214
    Abstract: A multi-stage amplifier is coupled with a power detector. The multi-stage amplifier includes a plurality of amplifier stages in series, with a signal path extending through them. The power detector is coupled to an interior node of the amplifier along the signal path, and is operable to sample a first signal being transmitted on the signal path. The power detector outputs a second signal reflective of a power of the first signal. In one embodiment, the interior node is in a matching network of the amplifier disposed between a first amplifier stage and a final amplifier stage of the amplifier. The second signal may be used in a feedback network to adjust an amount of amplification of the first signal by the amplifier.
    Type: Application
    Filed: March 17, 2004
    Publication date: September 9, 2004
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Li Liu, Christopher C. Souchuns, Ping Li, Gregory N. Henderson
  • Publication number: 20040085126
    Abstract: A multi-stage amplifier is coupled with a power detector. The multi-stage amplifier includes a plurality of amplifier stages in series, with a signal path extending through them. The power detector is coupled to an interior node of the amplifier along the signal path, and is operable to sample a first signal being transmitted on the signal path. The power detector outputs a second signal reflective of a power of the first signal. In one embodiment, the interior node is in a matching network of the amplifier disposed between a first amplifier stage and a final amplifier stage of the amplifier. The second signal may be used in a feedback network to adjust an amount of amplification of the first signal by the amplifier.
    Type: Application
    Filed: June 10, 2003
    Publication date: May 6, 2004
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Li Liu, Christopher C. Souchuns, Ping Li, Gregory N. Henderson
  • Publication number: 20040072554
    Abstract: An automatic-bias amplifier circuit includes an amplifier having an input, an output, and a signal path between the input and output. A power detector is coupled for sampling the power of a signal passed on the signal path. The point of coupling may be the output and/or at one or more internal nodes of the amplifier. The power detector outputs an analog voltage signal reflective of the power of the signal to a bias circuit. The bias circuit causes the amplifier to draw a quiescent current, from a fixed level DC power supply, that varies in proportion to the analog voltage signal. Accordingly, the power consumption of the amplifier is optimized for all output power levels of the amplifier, while maintaining a desired degree of linearity. The automatic-bias amplifier circuit may be used in a wireless radio frequency communications device, e.g., a cellular phone.
    Type: Application
    Filed: September 11, 2003
    Publication date: April 15, 2004
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Gregory N. Henderson, Christopher C. Souchuns, Li Liu, Ping Li, On San Andy Tang, Ashley A. Imhoff
  • Publication number: 20040070454
    Abstract: An amplifier and a bias circuit are disclosed. The bias circuit receives an analog voltage signal that reflects a desired output power level of the amplifier. The bias circuit causes the amplifier to draw a quiescent current, from a fixed-level DC voltage supply, that varies proportionally with the analog voltage signal. In this way, the current consumption of the amplifier is optimized for the desired output power level, while maintaining a desired, high degree of linearity. The amplifier and bias circuit may be in a wireless communications device that includes a baseband processor. The baseband processor generates the analog voltage signal, and a data signal that is converted to a RF signal. The RF signal is amplified by a preamplifier to a power level determined by the analog voltage signal. The RF signal is output to the amplifier for further amplification, and subsequently is broadcast through an antenna.
    Type: Application
    Filed: June 27, 2003
    Publication date: April 15, 2004
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Gregory N. Henderson, Christopher C. Souchuns, Li Liu, Ping Li, On San Andy Tang, Ashley A. Imhoff
  • Patent number: 5343070
    Abstract: A mesa-type PIN diode and method for making same are disclosed. A diode made according to the present invention includes a junction formed in the top surface of the mesa-shaped structure, having an area that is less than (and preferrably, approximately half) the area of the top surface. A highly-doped, N-type conducting layer is formed in the side-walls of the mesa-shaped structure. The resulting diode is subject to greatly reduced charge carrier recombination effects and suffers from much less carrier-to-carrier scattering than conventional diodes. Thus, a diode made according to the present invention is capable of achieving much higher stored charge, lower resistance, lower capacitance, better switching characteristics, and lower power consumption than one made according to the prior art. Particular utility is found, inter alia, in the areas of high-frequency microwave and monolithic circuits.
    Type: Grant
    Filed: August 2, 1993
    Date of Patent: August 30, 1994
    Assignee: M/A-COM, Inc.
    Inventors: Joel L. Goodrich, Christopher C. Souchuns
  • Patent number: 5268310
    Abstract: A mesa-type PIN diode and method for making same are disclosed. A diode made according to the present invention includes a junction formed in the top surface of the mesa-shaped structure, having an area that is less than (and preferrably, approximately half) the area of the top surface. A highly-doped, N-type conducting layer is formed in the side-walls of the mesa-shaped structure. The resulting diode is subject to greatly reduced charge carrier recombination effects and suffers from much less carrier-to-carrier scattering than conventional diodes. Thus, a diode made according to the present invention is capable of achieving much higher stored charge, lower resistance, lower capacitance, better switching characteristics, and lower power consumption than one made according to the prior art. Particular utility is found, inter alia, in the areas of high-frequency microwave and monolithic circuits.
    Type: Grant
    Filed: November 25, 1992
    Date of Patent: December 7, 1993
    Assignee: M/A-Com, Inc.
    Inventors: Joel L. Goodrich, Christopher C. Souchuns