Patents by Inventor Christopher Collazo-Davila

Christopher Collazo-Davila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977025
    Abstract: Gas sensors are disclosed having an on-board, low-power data processor that uses multivariable gas classification and/or gas quantitation models to perform on-board data processing to resolve two or more gases in a fluid sample. To reduce computational complexity, the gas sensor utilizes low-power-consumption multivariable data analysis algorithms, inputs from available on-board sensors of ambient conditions, inputs representing contextual data, and/or excitation responses of a gas sensing material to select suitable gas classification and/or gas quantitation models. The data processor can then utilize these gas classification and quantitation models, in combination with measured dielectric responses of a gas sensing material of the gas sensor, to determine classifications and/or concentrations of two or more gases in a fluid sample, while consuming substantially less power than would be consumed if a global comprehensive model were used instead.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: May 7, 2024
    Assignee: GE INFRASTRUCTURE TECHNOLOGY LLC
    Inventors: Radislav Alexandrovich Potyrailo, Baokai Cheng, Aghogho Atemu Obi, Christopher Collazo-Davila, Richard Jean-Luc St. Pierre
  • Publication number: 20240011900
    Abstract: Gas sensors are disclosed having an on-board, low-power data processor that uses multivariable gas classification and/or gas quantitation models to perform on-board data processing to resolve two or more gases in a fluid sample. To reduce computational complexity, the gas sensor utilizes low-power-consumption multivariable data analysis algorithms, inputs from available on-board sensors of ambient conditions, inputs representing contextual data, and/or excitation responses of a gas sensing material to select suitable gas classification and/or gas quantitation models. The data processor can then utilize these gas classification and quantitation models, in combination with measured dielectric responses of a gas sensing material of the gas sensor, to determine classifications and/or concentrations of two or more gases in a fluid sample, while consuming substantially less power than would be consumed if a global comprehensive model were used instead.
    Type: Application
    Filed: July 7, 2022
    Publication date: January 11, 2024
    Inventors: Radislav Alexandrovich Potyrailo, Baokai Cheng, Aghogho Atemu Obi, Christopher Collazo-Davila, Richard Jean-Luc St. Pierre
  • Publication number: 20060131669
    Abstract: An annular thin film transistor includes an annular source electrode disposed above the layer of the semiconductor material, a drain electrode disposed above the layer of the semiconductor material within the annular source electrode, and an active channel between the drain electrode and the annular source electrode, wherein a surface of the active channel comprises exposed semiconductor material. Further, a serpentine thin film transistor includes a serpentine source electrode disposed above the layer of the semiconductor material, a drain electrode disposed above the layer of semiconductor material and substantially within a recess formed by the serpentine source electrode, wherein the drain electrode is configured to substantially conform to the recess, and an active channel between the drain electrode and the serpentine source electrode, wherein the active channel has a substantially consistent length, and wherein a surface of the active channel comprises exposed semiconductor material.
    Type: Application
    Filed: December 22, 2004
    Publication date: June 22, 2006
    Inventors: Douglas Albagli, William Hennessy, Aaron Couture, Christopher Collazo-Davila
  • Patent number: 6432821
    Abstract: An electroplating process for filling damascene structures on substrates, such as wafers having partially fabricated integrated circuits thereon, includes immersing a substrate, under bias, into a copper plating solution to eliminate thin seed layer dissolution and reduce copper oxide, an initiation step to repair discontinuities in a copper seed layer, superfill plating to fill the smallest features, reverse plating to remove the adsorbed plating additives and their by-products from the substrate, a second superfill plating to fill intermediate size features, a second reverse plating to remove adsorbed plating additives and their by-products from the substrate, and a bulk fill plating with high current density to fill large features. The superfill and reverse plating operations may be repeated more than twice prior to bulk filling in order to provide the desired surface morphology.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: August 13, 2002
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Dave W. Jentz, Christopher Collazo-Davila
  • Publication number: 20020074234
    Abstract: An electroplating process for filling damascene structures on substrates, such as wafers having partially fabricated integrated circuits thereon, includes immersing a substrate, under bias, into a copper plating solution to eliminate thin seed layer dissolution and reduce copper oxide, an initiation step to repair discontinuities in a copper seed layer, superfill plating to fill the smallest features, reverse plating to remove the adsorbed plating additives and their by-products from the substrate, a second superfill plating to fill intermediate size features, a second reverse plating to remove adsorbed plating additives and their by-products from the substrate, and a bulk fill plating with high current density to fill large features. The superfill and reverse plating operations may be repeated more than twice prior to bulk filling in order to provide the desired surface morphology.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 20, 2002
    Inventors: Valery M. Dubin, Dave W. Jentz, Christopher Collazo-Davila