Patents by Inventor Christopher E. Barnhart

Christopher E. Barnhart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10792169
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 6, 2020
    Assignee: Otto Bock Healthcare LP
    Inventors: Rick Casler, Hugh Miller Herr, Zhixiu Han, Christopher E. Barnhart
  • Patent number: 10575971
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 3, 2020
    Assignee: Bionx Medical Technologies, Inc.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Publication number: 20190117415
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such, as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: July 30, 2018
    Publication date: April 25, 2019
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Publication number: 20180303634
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: March 21, 2018
    Publication date: October 25, 2018
    Inventors: Rick Casler, Hugh Miller Herr, Zhixiu Han, Christopher E. Barnhart
  • Patent number: 10080672
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: September 25, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Rick Casler, Hugh Miller Herr, Zhixiu Han, Christopher E. Barnhart
  • Patent number: 10070974
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 11, 2018
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 9839552
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: December 12, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher E. Barnhart, Hugh M. Herr, Christopher Williams, Jeff A. Weber, Richard J. Casler, Jr.
  • Patent number: 9687377
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: June 27, 2017
    Assignee: BIONX MEDICAL TECHNOLOGIES, INC.
    Inventors: Zhixiu Han, Christopher Williams, Jeff A. Weber, Christopher E. Barnhart, Hugh M. Herr, Richard J. Casler, Jr.
  • Publication number: 20160296348
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: April 11, 2016
    Publication date: October 13, 2016
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexaner S. Margolin, Kristen J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timonthy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Patent number: 9345592
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: May 24, 2016
    Assignee: BionX Medical Technologies, Inc.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Publication number: 20120259429
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint, and a controller that modulates the augmentation torque, the impedance, and a joint equilibrium according to a phase of the gait cycle to provide at least a biomimetic response. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain.
    Type: Application
    Filed: January 10, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher E. Barnhart, Hugh M. Herr, Christopher Williams, Jeff A. Weber, Richard J. Casler, JR.
  • Publication number: 20120259431
    Abstract: A powered device augments a joint function of a human during a gait cycle using a powered actuator that supplies an augmentation torque, an impedance, or both to a joint. A controller estimates terrain slope and modulates the augmentation torque and the impedance according to a phase of the gait cycle and the estimated terrain slope to provide at least a biomimetic response. The controller may also modulate a joint equilibrium. Accordingly, the device is capable of normalizing or augmenting human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain, and can be used, for example, as a knee orthosis, prosthesis, or exoskeleton.
    Type: Application
    Filed: January 23, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher Williams, Jeff A. Weber, Christopher E. Barnhart, Hugh M. Herr, Richard J. Casler, JR.
  • Publication number: 20120259430
    Abstract: In a communication system for controlling a powered human augmentation device, a parameter of the powered device is adjusted within a gait cycle by wirelessly transmitting a control signal thereto, whereby the adjusted parameter falls within a target range corresponding to that parameter. The target range is selected and the device parameters are controlled such that the powered device can normalize or augment human biomechanical function, responsive to a wearer's activity, regardless of speed and terrain and, in effect, provides at least a biomimetic response to the wearer of the powered device.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 11, 2012
    Inventors: Zhixiu Han, Christopher E. Barnhart, David A. Garlow, Adrienne Bolger, Hugh M. Herr, Gary Girzon, Richard J. Casler, JR., Jennifer T. McCarthy
  • Publication number: 20100179668
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: September 1, 2009
    Publication date: July 15, 2010
    Applicant: iWalk, Inc.
    Inventors: Hugh M. Herr, Rick Casler, Christopher M. Nook, Alexander S. Margolin, Kristin J. Size, Matthew T. Kowalczyk, Robert W. Spaller, Gregory K. Thompson, Timothy M. Dalrymple, Seth S. Kessler, David W. Murray, Christopher E. Barnhart
  • Publication number: 20100114329
    Abstract: Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
    Type: Application
    Filed: September 1, 2009
    Publication date: May 6, 2010
    Applicant: iWalk, Inc.
    Inventors: Rick Casler, Hugh Miller Herr, Zhixiu Han, Christopher E. Barnhart