Patents by Inventor Christopher F. Edwards

Christopher F. Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230358161
    Abstract: A neat-fuel direct-injected compression ignition engine having a thermal barrier coated combustion chamber, an injection port injects fuel that satisfies a stoichiometric condition with respect to the intake air, a mechanical exhaust regenerator transfers energy from exhaust gas to intake compression stages, an exhaust O2 sensor inputs to a feedback control to deliver quantified fuel, a variable valve actuation (VVA) controls valve positions, an exhaust gas temperature sensor controls exhaust feedback by closing the exhaust valve early according to the VVA, or recirculated to the chamber with an exhaust-gas-recirculation (EGR), heat exchanger, and flow path connecting an air intake, a load command input, and a computer operates the EGR from sensors to input exhaust gas according exhaust temperature signals and changes VVA timing, the load control is by chamber exhaust gas, the computer operates a fuel injector to deliver fuel independent of exhaust gas by the O2 signals.
    Type: Application
    Filed: December 7, 2022
    Publication date: November 9, 2023
    Inventors: Christopher F. Edwards, Bernard H. Johnson, IV, Gregory B. Roberts
  • Patent number: 11542856
    Abstract: A neat-fuel direct-injected compression ignition engine having a thermal barrier coated combustion chamber, an injection port injects fuel that satisfies a stoichiometric condition with respect to the intake air, a mechanical exhaust regenerator transfers energy from exhaust gas to intake compression stages, an exhaust O2 sensor inputs to a feedback control to deliver quantified fuel, a variable valve actuation (VVA) controls valve positions, an exhaust gas temperature sensor controls exhaust feedback by closing the exhaust valve early according to the VVA, or recirculated to the chamber with an exhaust-gas-recirculation (EGR), heat exchanger, and flow path connecting an air intake, a load command input, and a computer operates the EGR from sensors to input exhaust gas according exhaust temperature signals and changes VVA timing, the load control is by chamber exhaust gas, the computer operates a fuel injector to deliver fuel independent of exhaust gas by the O2 signals.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: January 3, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher F. Edwards, Bernard H. Johnson, IV, Gregory B. Roberts
  • Patent number: 10521017
    Abstract: A gesture sensing device includes a multiple segmented photo sensor and a control circuit for processing sensed voltages output from the sensor. The control circuit processes the sensed voltage signals to determine target motion relative to the segmented photo sensor. The control circuit includes an algorithm configured to calculate one of more differential analog signals using the sensed voltage signals output from the segmented photo sensors. A vector is determined according to the calculated differential analog signals, the vector is used to determine a direction and/or velocity of the target motion.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: December 31, 2019
    Assignee: Maxim Integrated Products, Inc.
    Inventors: David Skurnik, Nevzat A. Kestelli, Ilya K. Veygman, Anand Chamakura, Christopher F. Edwards, Nicole D. Kerness, Pirooz Parvarandeh, Sunny K. Hsu
  • Patent number: 10429236
    Abstract: A gesture sensing device includes a single light source and a multiple segmented single photo sensor, or an array of photo sensors, collectively referred to herein as segmented photo sensors. A light modifying structure relays reflected light from the light source onto different segments of the segmented photo sensors. The light modifying structure can be an optical lens structure or a mechanical structure. The different segments of the photo sensor sense reflected light and output corresponding sensed voltage signals. A control circuit receives and processes the sensed voltage signals to determine target motion relative to the segmented photo sensor.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: October 1, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: David Skurnik, Nevzat A. Kestelli, Ilya K. Veygman, Anand Chamakura, Christopher F. Edwards, Nicole D. Kerness, Pirooz Parvarandeh, Sunny K. Hsu
  • Patent number: 10203411
    Abstract: Aspects of the disclosure pertain to a system and method for reducing ambient light sensitivity of Infrared (IR) detectors. Optical filter(s) (e.g., absorption filter(s), interference filter(s)) placed over a sensor of the IR detector (e.g., gesture sensor) absorb or reflect visible light, while passing specific IR wavelengths, for promoting the reduced ambient light sensitivity of the IR detector.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: February 12, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Joy T. Jones, Nicole D. Kerness, Sunny K. Hsu, Anand Chamakura, Christopher F. Edwards, David Skurnik, Phillip J. Benzel, Nevzat A. Kestelli
  • Patent number: 10203759
    Abstract: A gesture detection device that includes an angled optical lens is disclosed. In one or more implementations, the gesture detection device includes a gesture sensor configured to detect electromagnetic radiation occurring within a limited spectrum of wavelengths and provides one or more signals in response thereto. The gesture detection device also includes an illumination source assembly configured to emit the electromagnetic radiation occurring within the limited spectrum of wavelengths. The illumination source assembly includes an illumination source for emitting the electromagnetic radiation occurring within the limited spectrum of wavelengths and a light collimating structure configured to at least partially collimate the electromagnetic radiation occurring within the limited spectrum of wavelengths. The light collimating structure is oriented at an angle with respect to an axis perpendicular to a surface of the gesture detection device.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: February 12, 2019
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Judy Lau, Christopher F. Edwards, Richard I. Olsen
  • Publication number: 20180306098
    Abstract: A neat-fuel direct-injected compression ignition engine having a thermal barrier coated combustion chamber, an injection port injects fuel that satisfies a stoichiometric condition with respect to the intake air, a mechanical exhaust regenerator transfers energy from exhaust gas to intake compression stages, an exhaust O2 sensor inputs to a feedback control to deliver quantified fuel, a variable valve actuation (VVA) controls valve positions, an exhaust gas temperature sensor controls exhaust feedback by closing the exhaust valve early according to the VVA, or recirculated to the chamber with an exhaust-gas-recirculation (EGR), heat exchanger, and flow path connecting an air intake, a load command input, and a computer operates the EGR from sensors to input exhaust gas according exhaust temperature signals and changes VVA timing, the load control is by chamber exhaust gas, the computer operates a fuel injector to deliver fuel independent of exhaust gas by the O2 signals.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Christopher F. Edwards, Bernard H. Johnson, IV, Gregory B. Roberts
  • Patent number: 9903262
    Abstract: A neat-fuel direct-injected compression ignition engine having a thermal barrier coated combustion chamber, an injection port injects fuel that satisfies a stoichiometric condition with respect to the intake air, a mechanical exhaust regenerator transfers energy from exhaust gas to intake compression stages, an exhaust O2 sensor inputs to a feedback control to deliver quantified fuel, a variable valve actuation (VVA) controls valve positions, an exhaust gas temperature sensor controls exhaust feedback by closing the exhaust valve early according to the VVA, or recirculated to the chamber with an exhaust-gas-recirculation (EGR), heat exchanger, and flow path connecting an air intake, a load command input, and a computer operates the EGR from sensors to input exhaust gas according exhaust temperature signals and changes VVA timing, the load control is by chamber exhaust gas, the computer operates a fuel injector to deliver fuel independent of exhaust gas by the O2 signals.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: February 27, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher F. Edwards, Bernard H. Johnson, IV, Gregory B. Roberts
  • Patent number: 9882075
    Abstract: Light sensors are described that include a trench structure integrated therein. In an implementation, the light sensor includes a substrate having a dopant material of a first conductivity type and multiple trenches disposed therein. The light sensor also includes a diffusion region formed proximate to the multiple trenches. The diffusion region includes a dopant material of a second conductivity type. A depletion region is created at the interface of the dopant material of the first conductivity type and the dopant material of the second conductivity type. The depletion region is configured to attract charge carriers to the depletion region, at least substantially a majority of the charge carriers generated due to light incident upon the substrate.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: January 30, 2018
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Christopher F. Edwards, Khanh Tran, Joy T. Jones, Pirooz Parvarandeh
  • Patent number: 9851327
    Abstract: A micro electrochemical cell, a micro electrochemical gas sensor, and a method for fabrication of the micro electrochemical cell are described that include a photopatternable glass substrate, two or more embedded electrodes integrated with through-glass vias, and a gas-permeable membrane lid. In an implementation, a micro electrochemical cell includes a photopatternable glass substrate; at least one recess formed in the photopatternable glass substrate; a plurality of through-glass vias formed in the photopatternable glass substrate, at least one electrolyte disposed in the at least one recess; a wicking layer disposed over the at least one electrolyte; and a lid assembly.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: December 26, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Dan G. Allen, Anand Chamakura, Christopher F. Edwards
  • Patent number: 9534955
    Abstract: The present disclosure describes an ultraviolet (UV) sensor configured to detect a target UV spectrum (e.g., UVB spectrum). The UV sensor includes a first photodiode with a first UV spectral response and a second photodiode with a second UV spectral response. A filter layer having a graded spectral response is formed over the second photodiode, and the second UV spectral response is affected by a controlled parameter (e.g., thickness) of the filter layer. The UV sensor further includes a subtraction circuit coupled with the first photodiode and the second photodiode. The subtraction circuit is configured to provide a differential response based on a difference between the first UV spectral response and the second UV spectral response. The controlled parameter of the filter layer can be selected such that the differential response provides a detected spectral response of the target spectrum.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 3, 2017
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Christopher F. Edwards, Dan G. Allen, Cheng-Wei Pei, Timothy K. McGuire, Joy T. Jones, Nicole D. Kerness
  • Patent number: 9354111
    Abstract: A wafer level optical device, system, and method are described that include a substrate, an electronic device disposed on the substrate, an illumination source disposed on the electronic device, an enclosure disposed on the substrate, where the enclosure includes at least one optical surface and covers the electronic device and the illumination source, and at least one solder ball disposed on a side of the substrate distal from the electronic device. In implementations, a process for using the wafer level optical device and lens-integrated package system that employ the techniques of the present disclosure includes receiving a substrate, placing an electronic device on the substrate, placing an illumination source on the electronic device, and placing an enclosure on the substrate, where the enclosure covers the electronic device and the illumination source, and the enclosure and a wall structure form a first compartment and a second compartment.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: May 31, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Jerome C. Bhat, Anand Chamakura, Kumar Nagarajan, Christopher F. Edwards
  • Publication number: 20160131525
    Abstract: The present disclosure describes an ultraviolet (UV) sensor configured to detect a target UV spectrum (e.g., UVB spectrum). The UV sensor includes a first photodiode with a first UV spectral response and a second photodiode with a second UV spectral response. A filter layer having a graded spectral response is formed over the second photodiode, and the second UV spectral response is affected by a controlled parameter (e.g., thickness) of the filter layer. The UV sensor further includes a subtraction circuit coupled with the first photodiode and the second photodiode. The subtraction circuit is configured to provide a differential response based on a difference between the first UV spectral response and the second UV spectral response. The controlled parameter of the filter layer can be selected such that the differential response provides a detected spectral response of the target spectrum.
    Type: Application
    Filed: March 27, 2015
    Publication date: May 12, 2016
    Inventors: Christopher F. Edwards, Dan G. Allen, Cheng-Wei Pei, Timothy K. McGuire, Joy T. Jones, Nicole D. Kerness
  • Patent number: 9322756
    Abstract: A nondispersive infrared (NDIR) micro-optics sensor package is described that includes one or more light sources, a photodetector, and control circuitry coupled to the one or more light sources to non-invasively measure blood alcohol concentration, such as without utilizing ex vivo bodily fluids for the measurements. Additionally, a mobile phone device configured to measure blood alcohol concentration is described that includes a mobile phone system and an NDIR micro-optics sensor package as disclosed above. Further, a process for measuring alcohol content within a subject is described.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: April 26, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Arvin Emadi, Nicole D. Kerness, Christopher F. Edwards
  • Patent number: 9322901
    Abstract: Optical devices are described that integrate multiple heterogeneous components in a single, compact package. In one or more implementations, the optical devices include a carrier substrate having a surface that includes two or more cavities formed therein. One or more optical component devices are disposed within the respective cavities in a predetermined arrangement. A cover is disposed on the surface of the carrier substrate so that the cover at least substantially encloses the optical component devices within their respective cavities. The cover, which may be glass, is configured to transmit light within the predetermined spectrum of wavelengths.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: April 26, 2016
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Joy T. Jones, Christopher F. Edwards, Arkadii V. Samoilov, Phillip J. Benzel, Richard I. Olsen, Peter R. Harper
  • Publication number: 20150346138
    Abstract: A micro electrochemical cell, a micro electrochemical gas sensor, and a method for fabrication of the micro electrochemical cell are described that include a photopatternable glass substrate, two or more embedded electrodes integrated with through-glass vias, and a gas-permeable membrane lid. In an implementation, a micro electrochemical cell includes a photopatternable glass substrate; at least one recess formed in the photopatternable glass substrate; a plurality of through-glass vias formed in the photopatternable glass substrate, at least one electrolyte disposed in the at least one recess; a wicking layer disposed over the at least one electrolyte; and a lid assembly.
    Type: Application
    Filed: September 26, 2014
    Publication date: December 3, 2015
    Inventors: Dan G. Allen, Anand Chamakura, Christopher F. Edwards
  • Publication number: 20150285139
    Abstract: A neat-fuel direct-injected compression ignition engine having a thermal barrier coated combustion chamber, an injection port injects fuel that satisfies a stoichiometric condition with respect to the intake air, a mechanical exhaust regenerator transfers energy from exhaust gas to intake compression stages, an exhaust O2 sensor inputs to a feedback control to deliver quantified fuel, a variable valve actuation (VVA) controls valve positions, an exhaust gas temperature sensor controls exhaust feedback by closing the exhaust valve early according to the VVA, or recirculated to the chamber with an exhaust-gas-recirculation (EGR), heat exchanger, and flow path connecting an air intake, a load command input, and a computer operates the EGR from sensors to input exhaust gas according exhaust temperature signals and changes VVA timing, the load control is by chamber exhaust gas, the computer operates a fuel injector to deliver fuel independent of exhaust gas by the O2 signals.
    Type: Application
    Filed: April 6, 2015
    Publication date: October 8, 2015
    Inventors: Christopher F. Edwards, Bernard H. Johnson, IV, Gregory B. Roberts
  • Publication number: 20150241347
    Abstract: A nondispersive infrared (NDIR) micro-optics sensor package is described that includes one or more light sources, a photodetector, and control circuitry coupled to the one or more light sources to non-invasively measure blood alcohol concentration, such as without utilizing ex vivo bodily fluids for the measurements. Additionally, a mobile phone device configured to measure blood alcohol concentration is described that includes a mobile phone system and an NDIR micro-optics sensor package as disclosed above. Further, a process for measuring alcohol content within a subject is described.
    Type: Application
    Filed: September 26, 2014
    Publication date: August 27, 2015
    Inventors: Arvin Emadi, Nicole D. Kerness, Christopher F. Edwards
  • Publication number: 20150109785
    Abstract: A wafer level optical device, system, and method are described that include a substrate, an electronic device disposed on the substrate, an illumination source disposed on the electronic device, an enclosure disposed on the substrate, where the enclosure includes at least one optical surface and covers the electronic device and the illumination source, and at least one solder ball disposed on a side of the substrate distal from the electronic device. In implementations, a process for using the wafer level optical device and lens-integrated package system that employ the techniques of the present disclosure includes receiving a substrate, placing an electronic device on the substrate, placing an illumination source on the electronic device, and placing an enclosure on the substrate, where the enclosure covers the electronic device and the illumination source, and the enclosure and a wall structure form a first compartment and a second compartment.
    Type: Application
    Filed: May 14, 2014
    Publication date: April 23, 2015
    Applicant: Maxim Integrated Products, Inc.
    Inventors: Nicole D. Kerness, Arkadii V. Samoilov, Jerome C. Bhat, Anand Chamakura, Kumar Nagarajan, Christopher F. Edwards
  • Patent number: 8906720
    Abstract: A device having one or more optical elements and an ambient light sensor integrated on a single substrate (e.g., wafer) and a method (e.g., process) for making same is described herein. The process includes the step of forming the ambient light sensor on a first surface of the substrate. The process further includes the step of forming a plurality of recesses in a second surface of the substrate, the second surface being located opposite the first surface. The process further includes depositing silicon dioxide into the plurality of recesses. The process further includes etching a pattern into the silicon dioxide (e.g., glass) to form the optical elements.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 9, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Pirooz Parvarandeh, Christopher F. Edwards, Joy T. Jones