Patents by Inventor Christopher J Ellans

Christopher J Ellans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8726674
    Abstract: A turboprop propulsion unit for an aircraft comprises a propeller 22 which is driven by a core engine by means of a propeller turbine 26 which drives the propeller 22 through a shaft 28 and a propeller gearbox 24. Restarting of the engine in flight is achieved by windmilling of the propeller 22, which drives a propeller gearbox lubricant pump 30. A diverter valve 40 causes lubricant delivered by the propeller gearbox lubricant pump 30 to be supplied to a turbomachinery lubricant pump 18 along a restart conduit 44, so as to drive the turbomachinery lubricant pump 18 as a motor. Torque generated by the turbomachinery lubricant pump 18 is transferred through an accessory gearbox 12 to a spool 4, 6, 8 of the core engine 2 and to a fuel pump 16. Control of the pitch of blades 36 of the propeller 22 enables the windmilling propeller 22 to achieve a desired speed of the spool 4, 6, 8 and output of the fuel pump 16 sufficient to restart the engine 2, even at low air speeds.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: May 20, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Christopher J. Ellans, John H. Martin
  • Publication number: 20110030385
    Abstract: A turboprop propulsion unit for an aircraft comprises a propeller 22 which is driven by a core engine by means of a propeller turbine 26 which drives the propeller 22 through a shaft 28 and a propeller gearbox 24. Restarting of the engine in flight is achieved by windmilling of the propeller 22, which drives a propeller gearbox lubricant pump 30. A diverter valve 40 causes lubricant delivered by the propeller gearbox lubricant pump 30 to be supplied to a turbomachinery lubricant pump 18 along a restart conduit 44, so as to drive the turbomachinery lubricant pump 18 as a motor. Torque generated by the turbomachinery lubricant pump 18 is transferred through an accessory gearbox 12 to a spool 4, 6, 8 of the core engine 2 and to a fuel pump 16. Control of the pitch of blades 36 of the propeller 22 enables the windmilling propeller 22 to achieve a desired speed of the spool 4, 6, 8 and output of the fuel pump 16 sufficient to restart the engine 2, even at low air speeds.
    Type: Application
    Filed: June 28, 2010
    Publication date: February 10, 2011
    Applicant: ROLLS-ROYCE PLC
    Inventors: Christopher J. Ellans, John H. Martin
  • Publication number: 20090151314
    Abstract: In a fluid system for a gas turbine engine, oil is supplied from an oil tank (10) by a constant displacement pump (12) to lubricate engine components (18). The oil is supplied to the components (18) via a heat exchanger (16) in which oil and fuel are placed in direct heat exchange relationship. The flow of oil to the components (18) is controlled by recirculating a proportion of the oil flow through a bypass (20). The bypass (20) regulates the flow of oil to the components (18) so that the amount of heat transferred to the fuel in the heat exchanger (16) is controlled. At low engine powers a greater proportion of the oil flows through the bypass (20) to reduce the oil flow to the components (18). This reduces the heat transferred to the fuel in the heat exchanger (16) and so prevents overheating of the fuel.
    Type: Application
    Filed: February 19, 2009
    Publication date: June 18, 2009
    Inventors: Mark J. Tumelty, Christopher J. Ellans
  • Patent number: 7509793
    Abstract: In a fluid system for a gas turbine engine, oil is supplied from an oil tank (10) by a constant displacement pump (12) to lubricate engine components (18). The oil is supplied to the components (18) via a heat exchanger (16) in which oil and fuel are placed in direct heat exchange relationship. The flow of oil to the components (18) is controlled by recirculating a proportion of the oil flow through a bypass (20). The bypass (20) regulates the flow of oil to the components (18) so that the amount of heat transferred to the fuel in the heat exchanger (16) is controlled. At low engine powers a greater proportion of the oil flows through the bypass (20) to reduce the oil flow to the components (18). This reduces the heat transferred to the fuel in the heat exchanger (16) and so prevents overheating of the fuel.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: March 31, 2009
    Assignee: Rolls-Royce plc.
    Inventors: Mark J Tumelty, Christopher J Ellans
  • Publication number: 20080105493
    Abstract: In a fluid system for a gas turbine engine, oil is supplied from an oil tank (10) by a constant displacement pump (12) to lubricate engine components (18). The oil is supplied to the components (18) via a heat exchanger (16) in which oil and fuel are placed in direct heat exchange relationship. The flow of oil to the components (18) is controlled by recirculating a proportion of the oil flow through a bypass (20). The bypass (20) regulates the flow of oil to the components (18) so that the amount of heat transferred to the fuel in the heat exchanger (16) is controlled. At low engine powers a greater proportion of the oil flows through the bypass (20) to reduce the oil flow to the components (18). This reduces the heat transferred to the fuel in the heat exchanger (16) and so prevents overheating of the fuel.
    Type: Application
    Filed: June 5, 2007
    Publication date: May 8, 2008
    Inventors: Mark J. Tumelty, Christopher J. Ellans
  • Patent number: 7287368
    Abstract: In a fluid system for a gas turbine engine, oil is supplied from an oil tank (10) by a constant displacement pump (12) to lubricate engine components (18). The oil is supplied to the components (18) via a heat exchanger (16) in which oil and fuel are placed in direct heat exchange relationship. The flow of oil to the components (18) is controlled by recirculating a proportion of the oil flow through a bypass (20). The bypass (20) regulates the flow of oil to the components (18) so that the amount of heat transferred to the fuel in the heat exchanger (16) is controlled. At low engine powers a greater proportion of the oil flows through the bypass (20) to reduce the oil flow to the components (18). This reduces the heat transferred to the fuel in the heat exchanger (16) and so prevents overheating of the fuel.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: October 30, 2007
    Assignee: Rolls-Royce plc
    Inventors: Mark J Tumelty, Christopher J Ellans