Patents by Inventor Christopher J. Hasser

Christopher J. Hasser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190213770
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Application
    Filed: March 12, 2019
    Publication date: July 11, 2019
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian David Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10282881
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: May 7, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20190047154
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20190022400
    Abstract: Wearable devices are provided herein including wearable defibrillators, wearable devices for diagnosing symptoms associated with sleep apnea, and wearable devices for diagnosing symptoms associated with heart failure. The wearable external defibrillators can include a plurality of ECG sensing electrodes and a first defibrillator electrode pad and a second defibrillator electrode pad. The ECG sensing electrodes and the defibrillator electrode pads are configured for long term wear. Methods are also provided for using the wearable external defibrillators to analyze cardiac signals of the wearer and to provide an electrical shock if a treatable arrhythmia is detected. Methods are also disclosed for refurbishing wearable defibrillators. Methods of using wearable devices for diagnosing symptoms associated with sleep apnea and for diagnosing symptoms associated with heart failure are also provided.
    Type: Application
    Filed: August 26, 2016
    Publication date: January 24, 2019
    Inventors: Uday N. KUMAR, Timothy BAHNEY, Maarten DINGER, Pedram AFSHAR, Jay DHULDHOYA, Riley MARANGI, Kevin M. FARINO, Christopher J. HASSER, Zachary J. MALCHANO, Frank GARCIA
  • Publication number: 20180360546
    Abstract: In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument.
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian E. McDowall, Christopher J. Hasser
  • Patent number: 10137575
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: November 27, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20180324414
    Abstract: In one embodiment, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 10085809
    Abstract: In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 2, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian E. McDowall, Christopher J. Hasser
  • Publication number: 20180225855
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Application
    Filed: April 5, 2018
    Publication date: August 9, 2018
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Patent number: 10038888
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: July 31, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Patent number: 10008017
    Abstract: An operator telerobotically controls tools to perform a procedure on an object at a work site while viewing real-time images of the work site on a display. Tool information is provided in the operator's current gaze area on the display by rendering the tool information over the tool so as not to obscure objects being worked on at the time by the tool nor to require eyes of the user to refocus when looking at the tool information and the image of the tool on a stereo viewer.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 26, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Daniel J. Halabe, Tao Zhao, Simon P. DiMaio, Christopher J. Hasser, Catherine J. Mohr, Paul W. Mohr, David Q. Larkin, Brian David Hoffman, Wenyi Zhao
  • Publication number: 20180126559
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Application
    Filed: June 21, 2017
    Publication date: May 10, 2018
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, Daniel J. Halabe, Christopher J. Hasser, Brian D. Hoffman, David Q. Larkin, Catherine J. Mohr, Paul W. Mohr, Tao Zhao, Wenyi Zhao
  • Publication number: 20180116756
    Abstract: A surgical site is simultaneously illuminated by less than all the visible color components that make up visible white light, and a fluorescence excitation illumination component by an illuminator in a minimally invasive surgical system. An image capture system acquires an image for each of the visible color components illuminating the surgical site and a fluorescence image, which is excited by the fluorescence excitation component from the illuminator. The minimally invasive surgical system uses the acquired images to generate a background black and white image of the surgical site. The acquired fluorescence image is superimposed on the background black and white image, and is highlighted in a selected color, e.g., green. The background black and white image with the superimposed highlighted fluorescence image is displayed for a user of the system. The highlighted fluorescence image identifies tissue of clinical interest.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 3, 2018
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Ian McDowall, Christopher J. Hasser
  • Patent number: 9952107
    Abstract: In one embodiment, a force sensor apparatus is provided including a tube portion having a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs, a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system, and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: April 24, 2018
    Assignee: Intuitive Surgical Operations, Inc
    Inventors: Stephen J. Blumenkranz, Christopher J. Hasser
  • Patent number: 9895813
    Abstract: An apparatus, system, and method for improving force and torque sensing and feedback to the surgeon performing a telerobotic surgery are provided. In one embodiment, a robotic surgical manipulator system, a robotic surgical system, and a method for improved sensing of forces on a robotic surgical instrument and/or manipulator arm are disclosed.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 20, 2018
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Stephen J Blumenkranz, Guiseppe M Prisco, Simon Peter DiMaio, Gregory William Dachs, II, Hanifa Dostmohamed, Christopher J Hasser, Gary S Guthart
  • Publication number: 20180042680
    Abstract: In one embodiment of the invention, a a minimally invasive surgical system is disclosed. The system configured to capture and display camera images of a surgical site on at least one display device at a surgeon console; switch out of a following mode and into a masters-as-mice (MaM) mode; overlay a graphical user interface (GUI) including an interactive graphical object onto the camera images; and render a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 15, 2018
    Inventors: Simon P. DiMaio, Christopher J. Hasser, Russell H. Taylor, David Q. Larkin, Peter Kazanzides, Anton Deguet, Balazs Peter Vagvolgyi, Joshua Leven
  • Publication number: 20170339399
    Abstract: In one embodiment of the invention, a digital zoom and panning system for digital video is disclosed including an image acquisition device to capture digital video images; an image buffer to store one or more frames of digital video images as source pixels; a display device having first pixels to display images; a user interface to accept user input including a source rectangle to select source pixels within frames of the digital video images, a destination rectangle to select target pixels within the display device to display images, and a region of interest within the digital video images to display in the destination rectangle; and a digital mapping and filtering device to selectively map and filter source pixels in the region of interest from the image buffer into target pixels of the display device in response to the user input.
    Type: Application
    Filed: June 6, 2017
    Publication date: November 23, 2017
    Inventors: Brian D. Hoffman, Christopher J. Hasser, William C. Nowlin
  • Publication number: 20170311778
    Abstract: The present invention is directed to an articulate minimally invasive surgical endoscope with a flexible wrist having at least one degree of freedom. When used with a surgical robot having a plurality of robot arms, the endoscope can be used with any of the plurality of arms thereby allowing the use a universal arm design. The endoscope in accordance to the present invention is made more intuitive to a user by attaching a reference frame used for controlling the at least one degree of freedom motion to the flexible wrist for wrist motion associated with the at least one degree of freedom. The endoscope in accordance to the present invention attenuates undesirable motion at its back/proximal end by acquiring the image of the object in association with the at least one degree of freedom based on a reference frame rotating around a point of rotation located proximal to the flexible wrist.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Christopher J. Hasser, Nitish Swarup, Thomas G. Cooper, S. Christopher Anderson
  • Patent number: 9795446
    Abstract: In one embodiment of the invention, a method for a minimally invasive surgical system is disclosed. The method includes capturing and displaying camera images of a surgical site on at least one display device at a surgeon console; switching out of a following mode and into a masters-as-mice (MaM) mode; overlaying a graphical user interface (GUI) including an interactive graphical object onto the camera images; and rendering a pointer within the camera images for user interactive control. In the following mode, the input devices of the surgeon console may couple motion into surgical instruments. In the MaM mode, the input devices interact with the GUI and interactive graphical objects. The pointer is manipulated in three dimensions by input devices having at least three degrees of freedom. Interactive graphical objects are related to physical objects in the surgical site or a function thereof and are manipulatable by the input devices.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: October 24, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Simon P. DiMaio, Christopher J. Hasser, Russell H. Taylor, David Q. Larkin, Peter Kazanzides, Anton Deguet, Balazs Peter Vagvolgyi, Joshua Leven
  • Patent number: 9789608
    Abstract: A synthetic representation of a robot tool for display on a user interface of a robotic system. The synthetic representation may be used to show the position of a view volume of an image capture device with respect to the robot. The synthetic representation may also be used to find a tool that is outside of the field of view, to display range of motion limits for a tool, to remotely communicate information about the robot, and to detect collisions.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 17, 2017
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Brandon D. Itkowitz, Daniel J. Halabe, Tao Zhao, Simon Dimaio, Christopher J. Hasser, Catherine J. Mohr, Paul W. Mohr, David Q. Larkin, Wenyi Zhao, Brian D. Hoffman