Patents by Inventor Christopher James Brooks

Christopher James Brooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10254485
    Abstract: An optical ring resonator structure with a backside recess is provided at a device. The device includes: a substrate having a device-side and a backside opposite the device-side; an optical ring resonator located on the device-side of the substrate; a heater having a shape complementary to the optical ring resonator, the heater positioned to heat the optical ring resonator; and one or more metal traces that connect at least to the heater, the metal traces configured to provide power to the heater and extending outward from the heater. The device further includes a recess on the backside of the substrate, the recess centered on the optical ring resonator, and having a diameter larger than both respective outer diameters of the optical ring resonator and the heater, the recess further extending laterally into a region of the one or more metal traces.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 9, 2019
    Assignee: RANOVUS INC.
    Inventors: Ryan Murray Hickey, Dylan Logan, Christopher James Brooks
  • Patent number: 10107960
    Abstract: A device that includes an optical coupler with a waveguide and waveguide index matched materials at an edge of a substrate, and a method of forming the device, is provided herein. The device comprises: a substrate having an edge, and an opening formed therein adjacent the edge; a layer of insulator on the substrate, which forms a bridge across the opening at the edge; a waveguide on the layer of insulator, the waveguide comprising a constant-width region and a tapered region terminating at the edge in a region of the opening; a first layer of optical epoxy in the opening, the optical epoxy indexed matched to the layer of insulator; and, a second layer of the optical epoxy on the tapered region, such that the optical epoxy optically contains an optical signal leaking from the waveguide in the tapered region.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 23, 2018
    Assignee: RANOVUS INC.
    Inventors: Ryan Murray Hickey, Christopher James Brooks, Dylan Logan, Andrew Peter Knights
  • Publication number: 20180074263
    Abstract: An optical ring resonator structure with a backside recess is provided at a device. The device includes: a substrate having a device-side and a backside opposite the device-side; an optical ring resonator located on the device-side of the substrate; a heater having a shape complementary to the optical ring resonator, the heater positioned to heat the optical ring resonator; and one or more metal traces that connect at least to the heater, the metal traces configured to provide power to the heater and extending outward from the heater. The device further includes a recess on the backside of the substrate, the recess centered on the optical ring resonator, and having a diameter larger than both respective outer diameters of the optical ring resonator and the heater, the recess further extending laterally into a region of the one or more metal traces.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Ryan Murray HICKEY, Dylan LOGAN, Christopher James BROOKS
  • Publication number: 20180074259
    Abstract: A device that includes an optical coupler with a waveguide and waveguide index matched materials at an edge of a substrate, and a method of forming the device, is provided herein. The device comprises: a substrate having an edge, and an opening formed therein adjacent the edge; a layer of insulator on the substrate, which forms a bridge across the opening at the edge; a waveguide on the layer of insulator, the waveguide comprising a constant-width region and a tapered region terminating at the edge in a region of the opening; a first layer of optical epoxy in the opening, the optical epoxy indexed matched to the layer of insulator; and, a second layer of the optical epoxy on the tapered region, such that the optical epoxy optically contains an optical signal leaking from the waveguide in the tapered region.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Ryan Murray HICKEY, Christopher James BROOKS, Dylan LOGAN, Andrew Peter KNIGHTS
  • Patent number: 9726821
    Abstract: An adiabatic elliptical optical coupler device is provided comprising: a substrate having an edge; a first waveguide on the substrate, the first waveguide comprising a constant-width region and a tapered region terminating at the edge of the substrate, the tapered region having a smaller width at the edge than at the constant-width region; and, a pair of second waveguides on the substrate, and located on either side of the tapered region, each of the pair of the second waveguides terminating at the edge at a first end and extending to a second end adjacent the constant-width region, and distal the first end; at least a portion of each of the pair of second waveguides being tapered, and optically coupled to the first waveguide to transition a mode of an optical signal in the first waveguide from an elliptical mode at the edge towards a confined mode.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: August 8, 2017
    Assignee: RANOVUS INC.
    Inventors: Kyle Murray, Dylan Logan, Christopher James Brooks, Ryan Murray Hickey
  • Publication number: 20170153392
    Abstract: An adiabatic elliptical optical coupler device is provided comprising: a substrate having an edge; a first waveguide on the substrate, the first waveguide comprising a constant-width region and a tapered region terminating at the edge of the substrate, the tapered region having a smaller width at the edge than at the constant-width region; and, a pair of second waveguides on the substrate, and located on either side of the tapered region, each of the pair of the second waveguides terminating at the edge at a first end and extending to a second end adjacent the constant-width region, and distal the first end; at least a portion of each of the pair of second waveguides being tapered, and optically coupled to the first waveguide to transition a mode of an optical signal in the first waveguide from an elliptical mode at the edge towards a confined mode.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Kyle MURRAY, Dylan LOGAN, Christopher James BROOKS, Ryan Murray HICKEY
  • Patent number: 9458542
    Abstract: The present teachings are directed toward an electrocatalytic cell including a barrier, having at least a first side and a second side opposite the first side, comprising a material permeable to oxygen ions and impermeable to at least CO2, CO, H2, H2O and hydrocarbons, an electrical power supply in communication with the barrier, a catalyst adjacent the first side of the barrier, a supply of feedstock components in communication with the first side of the barrier, a supply of a carrier gas component in communication with the second side of the barrier; wherein the feedstock components contact the catalyst and react to form hydrocarbon-containing components and oxygen-containing components, and the electrical power supply biases the barrier to thereby conduct oxygen ions from the first side to the second side. Also presented are a device and methods for producing carbon nanotubes.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 4, 2016
    Assignees: Honda Motor Co., Ltd., University of Connecticut, The
    Inventors: Steven L. Suib, Christopher James Brooks, Samuel Frueh, Boxun Hu, Eric Rolland Kreidler
  • Patent number: 8987160
    Abstract: Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation.
    Type: Grant
    Filed: March 26, 2011
    Date of Patent: March 24, 2015
    Assignees: Honda Motor Co., Ltd., The University of Connecticut
    Inventors: Steven L. Suib, Boxun Hu, Eric Rolland Kreidler, Christopher James Brooks
  • Publication number: 20120245236
    Abstract: Cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) supported Fe and Co catalysts are utilized in a method for producing hydrocarbons by a Fischer-Tropsch mechanism. The hydrocarbon producing method includes providing a catalyst of a manganese oxide-based octahedral molecular sieve nanofibers with an active catalyst component of at least one of iron, cobalt, nickel, copper, manganese, vanadium, zinc, and mixtures thereof, and further containing an alkali metal. The formation of iron carbides and cobalt carbides by exposing the catalyst to conditions sufficient to form those carbides is also taught. After the catalyst has been appropriately treated, a carbon source and a hydrogen source are provided and contacted with the catalyst to thereby form a hydrocarbon containing product. The catalyst have high catalytic activity and selectivity (75%) for C2+ hydrocarbons in both CO hydrogenation and CO2 hydrogenation.
    Type: Application
    Filed: March 26, 2011
    Publication date: September 27, 2012
    Inventors: Steven L. Suib, Boxun Hu, Eric Rolland Kreidler, Christopher James Brooks
  • Publication number: 20120241327
    Abstract: The present teachings are directed toward an electrocatalytic cell including a barrier, having at least a first side and a second side opposite the first side, comprising a material permeable to oxygen ions and impermeable to at least CO2, CO, H2, H2O and hydrocarbons, an electrical power supply in communication with the barrier, a catalyst adjacent the first side of the barrier, a supply of feedstock components in communication with the first side of the barrier, a supply of a carrier gas component in communication with the second side of the barrier; wherein the feedstock components contact the catalyst and react to form hydrocarbon-containing components and oxygen-containing components, and the electrical power supply biases the barrier to thereby conduct oxygen ions from the first side to the second side. Also presented are a device and methods for producing carbon nanotubes.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 27, 2012
    Applicants: THE UNIVERSITY OF CONNECTICUT, HONDA MOTOR CO., LTD.
    Inventors: Steven L. SUIB, Christopher James BROOKS, Samuel FRUEH, Boxun HU, Eric Rolland KREIDLER
  • Patent number: 8003565
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, optionally in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof; b) Ru, its oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Co, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu. Another disclosed catalyst formulation comprises Pt, its oxides or mixtures thereof; Ru, its oxides or mixtures thereof; Co, its oxides or mixtures thereof; and at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, V, Mo, Mn, Fe, Rh, Ir, Ge, Sn, Sb, La, Ce, Pr, Sm, and Eu, their oxides and mixtures thereof.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: August 23, 2011
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Freeslate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7744849
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas, such as a syngas, contacts a water gas shift catalyst in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst comprising: a) Pt, its oxides or mixtures thereof; b) at least one of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, their oxides and mixtures thereof; and c) at least one of Sc, Y, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ir, Ni, Pd, La, Ce, Pr, Nd, Sm, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: June 29, 2010
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, FreeSlate, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7687051
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof, b) at least one of Fe and Rh, their oxides and mixtures thereof, and c) at least one member selected from the group consisting of Sc, Y, Ti, Zr, V, Nb, Ta, Mo, Re, Co, Ni, Pd, Ge, Sn, Sb, La, Ce, Pr, Nd, Sm, and Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 30, 2010
    Assignees: Honda Giken Koygo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Christopher James Brooks, Raymond E. Carhart, Karin Yaccato, Cory Bernard Phillips, Peter Strasser, Robert K. Grasselli
  • Patent number: 7682598
    Abstract: The invention is directed toward methods of using alkali-containing catalysts for generation of hydrogen-rich gas at temperatures of less than about 260° C. A WGS catalyst of the invention may have the following composition: a) at least one of Pt, Ru, their oxides and mixtures thereof; b) Na, its oxides or mixtures thereof; and optionally, c) Li, its oxides and mixtures thereof. The catalysts may be supported on a variety of catalyst support materials. The invention is also directed toward catalysts that exhibit both high activity and selectivity to hydrogen generation and carbon monoxide oxidation.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: March 23, 2010
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Solutions, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Andreas Lesik, Christopher James Brooks
  • Publication number: 20100022386
    Abstract: A method and catalysts for producing a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas contacts a water gas shift (WGS) catalyst, in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) Pt, its oxides or mixtures thereof, b) at least one of Fe and Rh, their oxides and mixtures thereof, and c) at least one member selected from the group consisting of Sc, Y, Ti, Zr, V, Nb, Ta, Mo, Re, Co, Ni, Pd, Ge, Sn, Sb, La, Ce, Pr, Nd, Sm, and Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 28, 2010
    Inventors: Alfred Hagemeyer, Christopher James Brooks, Raymond E. Carhart, Karin Yaccato, Cory Bernard Phillips, Peter Strasser, Robert K. Grasselli
  • Patent number: 7557063
    Abstract: The invention relates to noble metal-free nickel catalysts that exhibit both high activity and selectivity to hydrogen generation and carbon monoxide oxidation. The noble metal-free water gas shift catalyst of the invention comprises Ni in either a supported or a bulk state and at least one of Ge, Cd, In, Sn, Sb, Te, Pb, their oxides and mixtures thereof.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: July 7, 2009
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Christopher James Brooks, Raymond E. Carhart, Karin Yaccato, Michael Herrmann
  • Patent number: 7473667
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof, b) Co, Mo, their oxides or mixtures thereof, and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: January 6, 2009
    Assignees: Honda Giken Koygo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7270798
    Abstract: The invention relates to methods of using noble metal-free nickel catalysts to generate a hydrogen-rich gas from gas mixtures containing carbon monoxide and water, such as water-containing syngas mixtures, where the nickel may exist in either a supported or a bulk state. The noble metal-free water gas shift catalyst of the invention comprises Ni in either a supported or a bulk state and at least one of Ge, Cd, In, Sn, Sb, Te, Pb, their oxides and mixtures thereof. The invention is also directed toward noble metal-free nickel catalysts that exhibit both high activity and selectivity to hydrogen generation and carbon monoxide oxidation.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 18, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Christopher James Brooks, Raymond E. Carhart, Karin Yaccato, Michael Herrmann
  • Patent number: 7179442
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method a CO-containing gas, such as a syngas, contacts a water gas shift (“WGS”) catalyst, in the presence of water, preferably at a temperature of less than about 450° C. to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a water gas shift catalyst formulated from: a) at least one of Rh, Ni, Pt, their oxides and mixtures thereof, b) at least one of Cu, Ag, Au, their oxides and mixtures thereof; and c) at least one of K, Cs, Sc, Y, Ti, Zr, V, Mo, Re, Fe, Ru, Co, Ir, Pd, Cd, In, Ge, Sn, Pb, Sb, Te, La, Ce, Pr, Nd, Sm, Eu, their oxides and mixtures thereof. Another disclosed catalyst formulation comprises Rh, its oxides or mixtures thereof, Pt, its oxides or mixtures thereof and Ag, its oxides or mixtures thereof.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 20, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Peter Strasser, Michael Herrmann, Robert K. Grasselli, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 7160534
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas. Also disclosed is a platinum-free ruthenium-cobalt water gas shift catalyst formulated from: a) Ru, its oxides or mixtures thereof; b) Co, Mo, their oxides or mixtures thereof; and c) at least one of Li, Na, K, Rb, Cs, Ti, Zr, Cr, Fe, La, Ce, Eu, their oxides and mixtures thereof. The WGS catalyst may be supported on a carrier, such as any one member or a combination of alumina, zirconia, titania, ceria, magnesia, lanthania, niobia, zeolite, perovskite, silica clay, yttria and iron oxide. Fuel processors containing such water gas shift catalysts are also disclosed.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 9, 2007
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Symyx Technologies, Inc.
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips