Patents by Inventor Christopher M. Peitsch

Christopher M. Peitsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092017
    Abstract: Additive manufacturing processes, systems and three-dimensional articles include the formation of voxels and/or portions of three-dimensional articles with different properties relative to other voxels and/or portions. The processes generally include changing one or more laser beam parameters including power level, exposure time, hatch spacing, point distance, velocity, and energy density during the formation of selected voxels and/or portions of the three-dimensional articles. Also disclosed are processes that include an additive manufacturing process that provides localized secondary heat treatment of certain voxels and/or regions at a temperature below the melting point of the three-dimensional article but high enough to effect a localized property change.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Steven M. Storck, Morgana M. Trexler, Andrew M. Lennon, Ian D McCue, Salahudin N. Nimer, Christopher M. Peitsch
  • Publication number: 20240017326
    Abstract: A rapid material development process for a powder bed fusion additive manufacturing (PBF AM) process generally utilizes a computational fluid dynamics (CFD) simulation to facilitate selection of a simulated parameter set, which can then be used in a design of experiments (DOE) to generate an orthogonal parameter space to predict an ideal parameter set. The orthogonal parameter space defined by the DOE can then be used to generate a multitude of reduced volume build samples using PBF AM with varying laser or electron beam parameters and/or feedstock chemistries. The reduced volume build samples are mechanically characterized using high throughput techniques and analyzed to provide an optimal parameter set for a 3D article or a validation sample, which provides an increased understanding of the parameters and their independent and confounding effects on defects and microstructure.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 18, 2024
    Inventors: Steven M. Storck, Joseph J. Sopcisak, Christopher M. Peitsch, Salahudin M. Nimer, Zachary R Ulbig
  • Patent number: 11865771
    Abstract: Additive manufacturing processes, systems and three-dimensional articles include the formation of voxels and/or portions of three-dimensional articles with different properties relative to other voxels and/or portions. The processes generally include changing one or more laser beam parameters including power level, exposure time, hatch spacing, point distance, velocity, and energy density during the formation of selected voxels and/or portions of the three-dimensional articles. Also disclosed are processes that include an additive manufacturing process that provides localized secondary heat treatment of certain voxels and/or regions at a temperature below the melting point of the three-dimensional article but high enough to effect a localized property change.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 9, 2024
    Assignee: The Johns Hopkins University
    Inventors: Steven M. Storck, Morgana M. Trexler, Andrew M. Lennon, Ian D. McCue, Salahudin M. Nimer, Christopher M. Peitsch
  • Patent number: 11806784
    Abstract: A rapid material development process for a powder bed fusion additive manufacturing (PBF AM) process generally utilizes a computational fluid dynamics (CFD) simulation to facilitate selection of a simulated parameter set, which can then be used in a design of experiments (DOE) to generate an orthogonal parameter space to predict an ideal parameter set. The orthogonal parameter space defined by the DOE can then be used to generate a multitude of reduced volume build samples using PBF AM with varying laser or electron beam parameters and/or feedstock chemistries. The reduced volume build samples are mechanically characterized using high throughput techniques and analyzed to provide an optimal parameter set for a 3D article or a validation sample, which provides an increased understanding of the parameters and their independent and confounding effects on defects and microstructure.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: November 7, 2023
    Assignee: The Johns Hopkins University
    Inventors: Steven M. Storck, Joseph J. Sopcisak, Christopher M. Peitsch, Salahudin M. Nimer, Zachary R. Ulbig
  • Publication number: 20210362242
    Abstract: A rapid material development process for a powder bed fusion additive manufacturing (PBF AM) process generally utilizes a computational fluid dynamics (CFD) simulation to facilitate selection of a simulated parameter set, which can then be used in a design of experiments (DOE) to generate an orthogonal parameter space to predict an ideal parameter set. The orthogonal parameter space defined by the DOE can then be used to generate a multitude of reduced volume build samples using PBF AM with varying laser or electron beam parameters and/or feedstock chemistries. The reduced volume build samples are mechanically characterized using high throughput techniques and analyzed to provide an optimal parameter set for a 3D article or a validation sample, which provides an increased understanding of the parameters and their independent and confounding effects on defects and microstructure.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 25, 2021
    Inventors: Steven M. Storck, Joseph J. Sopcisak, Christopher M. Peitsch, Salahudin M. Nimer, Zachary R. Ulbig
  • Publication number: 20210026324
    Abstract: Additive manufacturing processes, systems and three-dimensional articles include the formation of voxels and/or portions of three-dimensional articles with different properties relative to other voxels and/or portions. The processes generally include changing one or more laser beam parameters including power level, exposure time, hatch spacing, point distance, velocity, and energy density during the formation of selected voxels and/or portions of the three-dimensional articles. Also disclosed are processes that include an additive manufacturing process that provides localized secondary heat treatment of certain voxels and/or regions at a temperature below the melting point of the three-dimensional article but high enough to effect a localized property change.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 28, 2021
    Inventors: Steven M. Storck, Morgana M. Trexler, Andrew M. Lennon, Ian D. McCue, Salahudin M. Nimer, Christopher M. Peitsch