Patents by Inventor Christopher M. Vega

Christopher M. Vega has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890957
    Abstract: Apparatus, systems, and methods described herein relate generally to autonomous mobile units carrying a modular configurable battery system that may attach and power mobile units in transportation systems. A method can include determining charge levels, current positions, and transport speeds for an electric vehicle (EV), identifying one or more EVs in need of charging, and mobilizing a Mobile Charging Station (MoCS) to deliver one or more external batteries. A processor, with a memory including computer program code, can be configured to receive current charge level data for mobile battery-powered entities, identify one or more EVs to be charged and the proximity of both MoCS and physical battery stations, and send charging instructions to the EVs. A routing and charge transaction scheduling algorithm can be used to optimize the route of one or more battery-powered entities and to schedule charge transactions between the EV and MoCS and/or the battery station.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: February 6, 2024
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: Prabuddha Chakraborty, Swarup Bhunia, Christopher M. Vega
  • Publication number: 20210347275
    Abstract: Apparatus, systems, and methods described herein relate generally to autonomous mobile units carrying a modular configurable battery system that may attach and power mobile units in transportation systems. A method can include determining charge levels, current positions, and transport speeds for an electric vehicle (EV), identifying one or more EVs in need of charging, and mobilizing a Mobile Charging Station (MoCS) to deliver one or more external batteries. A processor, with a memory including computer program code, can be configured to receive current charge level data for mobile battery-powered entities, identify one or more EVs to be charged and the proximity of both MoCS and physical battery stations, and send charging instructions to the EVs. A routing and charge transaction scheduling algorithm can be used to optimize the route of one or more battery-powered entities and to schedule charge transactions between the EV and MoCS and/or the battery station.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 11, 2021
    Inventors: Prabuddha CHAKRABORTY, Swarup BHUNIA, Christopher M. Vega