Patents by Inventor Christopher Paulson

Christopher Paulson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240025647
    Abstract: An Inventory Management and Delivery System (IMDS system) manages product items within a climate-controlled enclosure (e.g., beverage case) in an automated manner using a product loading (ingestion) subsystem to convey product items into the enclosure's climate-controlled environment and utilizes two gantry robots and an articulated robot to perform all backstocking/storage and delivery/restocking operations. Product items are ingested on standardized crates to simplify backstocking/retrieval of various product types from an array of storage locations using the first (backstocking) gantry robot. During restocking operations, the required crates are retrieved from storage and individual items are extracted and by the articulated robot and transferred to the second (delivery) gantry robot. The second gantry robot utilizes a simplified channel-type delivery mechanism to deliver each product item to its associated display shelf location.
    Type: Application
    Filed: July 24, 2023
    Publication date: January 25, 2024
    Applicant: RIOS Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Michael A. Benedict, Christopher Lalau Keraly
  • Patent number: 11679418
    Abstract: A work cell and method for automatically separating objects disposed in 3D clusters includes dispensing the objects onto a horizontal conveying surface to form a 2D array, reforming the 2D array into a 1D stream in which the objects move in single-file in a predefined moving direction, utilizing a vision-based or other stationary sensing system to identify a selected target object in the 1D stream as the target object passes through an image capture (sensing) region, calculating trajectory data defining the target object's time-based position in the 1D stream, and then utilizing the trajectory data to control a robot arm or other object removal mechanism such that only the selected object is forcibly removed (e.g., swiped or picked-up) from the horizontal conveying surface. A continuous-loop-type conveying mechanism includes two parallel conveyor-belt-type conveying structures and associated belt-switching structures. An AI-powered vision system identifies new object shapes during preliminary learning phases.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: June 20, 2023
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Nicholas L. Choi, Christopher Lalau Keraly, Matthew E. Shaffer, Laura Stelzner, Leo Keselman, Anthony Canalungo, Clinton J. Smith
  • Patent number: 11642796
    Abstract: A human-like tactile perception apparatus for providing enhanced tactile information (feedback data) from an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus's base structure is attached to the gripper's finger and includes a flat/planar support plate that presses a pressure sensor array against a target object during operable interactions. The pressure sensor array generates pressure sensor data that indicates portions of the array contacted by surface features of the target object. A sensor data processing circuit generates tactile information in response to the pressure sensor data, and then transmits the tactile information to the robotic system's control circuit. An optional mezzanine connector extends through an opening in the support plate to pass pressure sensor data to the processing circuit. An encapsulating layer covers the pressure sensor array and transmits pressure waves generated by slipping objects to enhance the tactile information.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 9, 2023
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse, Matthew E. Shaffer
  • Patent number: 11542103
    Abstract: An automated food production work cell includes a robotic system that utilizes a food-grade robotic gripper to transfer individual food items. The robotic gripper is constructed using food-grade materials and includes finger structures that are linearly movably connected by linear bearings to parallel guide rods and are independently driven by a non-contact actuating system to grasp targeted food items disposed on a first work surface, to hold the targeted food items while the robotic system moves the gripper to a second work surface, and to release the targeted food items onto the second work surface. Encoding and external sensing systems facilitate fully automated food transfer processes. Optional sensor arrays are disposed on tip portions of the finger structures to provide feedback data (e.g., grasping force/pressure). Two or more pairs of independently controlled finger structures are provided to facilitate the transfer of multiple food items during each transfer process.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 3, 2023
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Nicholas L. Choi, Leo Keselman, Laura L. Sullivan, Kent A. Evans, Laura Stelzner, Clinton J. Smith
  • Publication number: 20220331840
    Abstract: A work cell and method for automatically separating objects disposed in 3D clusters includes dispensing the objects onto a horizontal conveying surface to form a 2D array, reforming the 2D array into a 1D stream in which the objects move in single-file in a predefined moving direction, utilizing a vision-based or other stationary sensing system to identify a selected target object in the 1D stream as the target object passes through an image capture (sensing) region, calculating trajectory data defining the target object's time-based position in the 1D stream, and then utilizing the trajectory data to control a robot arm or other object removal mechanism such that only the selected object is forcibly removed (e.g., swiped or picked-up) from the horizontal conveying surface. A continuous-loop-type conveying mechanism includes two parallel conveyor-belt-type conveying structures and associated belt-switching structures. An AI-powered vision system identifies new object shapes during preliminary learning phases.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Applicant: RIOS Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Nicholas L. Choi, Christopher Lalau Keraly, Matthew E. Shaffer, Laura Stelzner, Leo Keselman, Anthony Canalungo, Clinton J. Smith
  • Patent number: 11433555
    Abstract: A robotic gripper (end effector) for an arm-type robotic system includes a hierarchical sensor architecture that utilizes a central data processing circuit to generate rich sensory tactile data in response to pressure, temperature, vibration and/or proximity sensor data generated by finger-mounted sensor groups in response to interactions between the robotic gripper and a target object during robotic system operations. The rich sensory tactile data is used to generate feedback signals that directly control finger actuators and/or tactile information that is supplied to the robotic system's control circuit. Sensor data processing circuits are configured to receive single-sensor data signals in parallel from the sensor groups, and to transmit corresponding finger-level sensor data signal on a serial bus/signal line to the central data processing circuit.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 6, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Clinton J. Smith, Christopher A. Paulson, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Patent number: 11426599
    Abstract: A neuromodulator includes one or more coil sets. Each of the coil sets has three coils aligned to produce magnetic and electric fields in three different directions. A plurality of conductors couple the coils of the one or more coil sets to one or more input signals such that each of the coils is independently activated via an individually selectable current applied through the conductors. The individual activation creates a resultant field that is a combination of the magnetic and electric fields in three different directions for each of the coil sets.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 30, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Krishnan Thyagarajan, Bernard D. Casse, Christopher Paulson, George Daniel, Armin R. Volkel
  • Patent number: 11413760
    Abstract: A flex-rigid sensor apparatus for providing sensor data from sensors disposed on an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus includes piezo-type pressure sensors sandwiched between lower and upper PCB stack-up structures respectively fabricated using rigid PCB (e.g., FR-4) and flexible PCB (e.g., polyimide) manufacturing processes. Additional (e.g., temperature and proximity) sensors are mounted on the upper/flexible stack-up structure. A spacer structure is disposed between the two stack-up structures and includes an insulating material layer defining openings that accommodate the pressure sensors. Copper film layers are configured to provide Faraday cages around each pressure sensor. The pressure sensors, additional sensors and Faraday cages are connected to sensor data processing and control circuitry (e.g., analog-to-digital converter circuits) by way of signal traces formed in the lower and upper stack-up structures and in the spacer structure.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 16, 2022
    Assignee: RIOA Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Patent number: 11383390
    Abstract: A robotic network includes multiple work cells that communicate with a cloud server using a network bus (e.g., the Internet). Each work cell includes an interface computer and a robotic system including a robot mechanism and a control circuit. Each robot mechanism includes an end effector/gripper having integral multimodal sensor arrays that measure physical parameter values (sensor data) during interactions between the end effector/gripper and target objects. The cloud server collects and correlates sensor data from all of the work cells to facilitate efficient diagnosis of problematic robotic operations (e.g., accidents/failures), and then automatically updates each work cell with improved operating system versions or AI models (e.g., including indicator parameter value sets and associated secondary robot control signals that may be used by each robot system to detect potential imminent robot accidents/failures during subsequent robot operations.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 12, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Matthew E. Shaffer, Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse
  • Patent number: 11273555
    Abstract: A multimodal sensing architecture utilizes an array of single sensor or multi-sensor groups (superpixels) to facilitate advanced object-manipulation and recognition tasks performed by mechanical end effectors in robotic systems. The single-sensors/superpixels are spatially arrayed over contact surfaces of the end effector fingers and include, e.g., pressure sensors and vibration sensors that facilitate the simultaneous detection of both static and dynamic events occurring on the end effector, and optionally include proximity sensors and/or temperature sensors. A readout circuit receives the sensor data from the superpixels and transmits the sensor data onto a shared sensor data bus.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 15, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Bernard D. Casse, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Christopher A. Paulson
  • Patent number: 11107645
    Abstract: A device includes at least one stress-engineered portion and at least one second portion. The stress-engineered portion includes at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress. The tensile stress layer and the compressive stress layer are mechanically coupled such that the at least one tensile stress layer and the at least one compressive stress layer are self-equilibrating. The stress-engineered portion is configured to fracture due to propagating cracks generated in response to energy applied to the stress-engineered portion. Fracture of the stress-engineered portion changes functionality of the device from a first function to a second function, different from the first function.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: August 31, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott J. Limb, Christopher Paulson, Erica Ronchetto
  • Publication number: 20210154488
    Abstract: A neuromodulator includes one or more coil sets. Each of the coil sets has three coils aligned to produce magnetic and electric fields in three different directions. A plurality of conductors couple the coils of the one or more coil sets to one or more input signals such that each of the coils is independently activated via an individually selectable current applied through the conductors. The individual activation creates a resultant field that is a combination of the magnetic and electric fields in three different directions for each of the coil sets.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Inventors: Krishnan Thyagarajan, Bernard D. Casse, Christopher Paulson, George Daniel, Armin R. Volkel
  • Patent number: 10794858
    Abstract: An electrochemical metal alloy identification device employing electrolytes to measure and identify different potentials of alloys is presented. This includes physical structure, disposables, electrical systems, control circuitry, and algorithms to identify alloys.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: October 6, 2020
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: David Mathew Johnson, Jianer Bao, Martin J. Sheridan, Vedasri Vedharathinam, Christopher Paulson, Bhaskar Saha, Jessica Louis Baker Rivest
  • Publication number: 20200306979
    Abstract: A flex-rigid sensor apparatus for providing sensor data from sensors disposed on an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus includes piezo-type pressure sensors sandwiched between lower and upper PCB stack-up structures respectively fabricated using rigid PCB (e.g., FR-4) and flexible PCB (e.g., polyimide) manufacturing processes. Additional (e.g., temperature and proximity) sensors are mounted on the upper/flexible stack-up structure. A spacer structure is disposed between the two stack-up structures and includes an insulating material layer defining openings that accommodate the pressure sensors. Copper film layers are configured to provide Faraday cages around each pressure sensor. The pressure sensors, additional sensors and Faraday cages are connected to sensor data processing and control circuitry (e.g., analog-to-digital converter circuits) by way of signal traces formed in the lower and upper stack-up structures and in the spacer structure.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Christopher A. Paulson, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Publication number: 20200306988
    Abstract: A robotic network includes multiple work cells that communicate with a cloud server using a network bus (e.g., the Internet). Each work cell includes an interface computer and a robotic system including a robot mechanism and a control circuit. Each robot mechanism includes an end effector/gripper having integral multimodal sensor arrays that measure physical parameter values (sensor data) during interactions between the end effector/gripper and target objects. The cloud server collects and correlates sensor data from all of the work cells to facilitate efficient diagnosis of problematic robotic operations (e.g., accidents/failures), and then automatically updates each work cell with improved operating system versions or AI models (e.g., including indicator parameter value sets and associated secondary robot control signals that may be used by each robot system to detect potential imminent robot accidents/failures during subsequent robot operations.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Matthew E. Shaffer, Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse
  • Publication number: 20200306993
    Abstract: A robotic gripper (end effector) for an arm-type robotic system includes a hierarchical sensor architecture that utilizes a central data processing circuit to generate rich sensory tactile data in response to pressure, temperature, vibration and/or proximity sensor data generated by finger-mounted sensor groups in response to interactions between the robotic gripper and a target object during robotic system operations. The rich sensory tactile data is used to generate feedback signals that directly control finger actuators and/or tactile information that is supplied to the robotic system's control circuit. Sensor data processing circuits are configured to receive single-sensor data signals in parallel from the sensor groups, and to transmit corresponding finger-level sensor data signal on a serial bus/signal line to the central data processing circuit.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Clinton J. Smith, Christopher A. Paulson, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Publication number: 20200306986
    Abstract: A human-like tactile perception apparatus for providing enhanced tactile information (feedback data) from an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus's base structure is attached to the gripper's finger and includes a flat/planar support plate that presses a pressure sensor array against a target object during operable interactions. The pressure sensor array generates pressure sensor data that indicates portions of the array contacted by surface features of the target object. A sensor data processing circuit generates tactile information in response to the pressure sensor data, and then transmits the tactile information to the robotic system's control circuit. An optional mezzanine connector extends through an opening in the support plate to pass pressure sensor data to the processing circuit. An encapsulating layer covers the pressure sensor array and transmits pressure waves generated by slipping objects to enhance the tactile information.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse, Matthew E. Shaffer
  • Patent number: 10740577
    Abstract: A passive sensor tag system including a passive electronic sensor tag and an external readout. The passive electronic sensor tag including a sensor element configured to sense data in a local environment and to cause a shift in a fundamental electrical resonance frequency characteristic of a sensor circuit based on the sensed data. The external readout including an external readout circuit that is configured to generate a signal having a frequency and a voltage and to transmit the signal through an output antenna. The transmitted signal coupling the sensor circuit and the external readout circuit. The external readout determining a fundamental electrical resonance frequency characteristic of the sensor circuit based on the impedance of the coupled sensor circuit and external readout circuit. The external readout determining the sensed data based the fundamental electrical resonance frequency characteristic of the sensor circuit.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 11, 2020
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher Paulson, Ramkumar Abhishek, Gregory Whiting
  • Publication number: 20200176200
    Abstract: A device includes at least one stress-engineered portion and at least one second portion. The stress-engineered portion includes at least one tensile stress layer having a residual tensile stress and at least one compressive stress layer having a residual compressive stress. The tensile stress layer and the compressive stress layer are mechanically coupled such that the at least one tensile stress layer and the at least one compressive stress layer are self-equilibrating. The stress-engineered portion is configured to fracture due to propagating cracks generated in response to energy applied to the stress-engineered portion. Fracture of the stress-engineered portion changes functionality of the device from a first function to a second function, different from the first function.
    Type: Application
    Filed: November 29, 2018
    Publication date: June 4, 2020
    Inventors: Scott J. Limb, Christopher Paulson, Erica Ronchetto
  • Patent number: 10603505
    Abstract: An implantable neural probe includes a flexible substrate having a first surface and an opposing second surface. The probe has an elongated three dimensional shape with an exterior surface and an interior surface such that the exterior surface of the probe includes at least a portion of first surface of the flexible substrate and the interior surface of the probe includes at least a portion of the second surface of the flexible substrate. The probe may include an array of one or more neural stimulators disposed on the flexible substrate and configured to stimulate neurons. The probe may alternatively or additionally include an array of one or more neural sensors configured to sense brain neurons.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 31, 2020
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Bernard D. Casse, George Daniel, Jonathan Rivnay, Christopher Paulson, Robert Street