Patents by Inventor Christopher Scott Thomas

Christopher Scott Thomas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125395
    Abstract: A fluid end assembly comprising a housing having multiple conduits formed therein. A tubular sleeve is installed within one of the conduits and is configured to house a plurality of packing seals. A seal is installed within a groove formed in the walls of the housing surrounding the tubular sleeve such that the seal engages an outer surface of the tubular sleeve.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 18, 2024
    Inventors: Mark S. Nowell, Kelcy Jake Foster, Michael Eugene May, Brandon Scott Ayres, Christopher Todd Barnett, Micheal Cole Thomas, Guy J. Lapointe
  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Patent number: 11952986
    Abstract: A fluid end for use with a power end. The fluid end comprises a plurality of fluid end sections positioned adjacent one another. Each section includes a single horizontally positioned bore. A plunger is installed within the bore and includes a fluid passageway. Low-pressure fluid enters the bore through the plunger and high-pressure fluid exits the fluid end through an outlet valve installed within the bore. The intake of low-pressure fluid within the fluid end section is regulated by an inlet valve installed within the plunger. Low-pressure fluid enters the plunger through an inlet component attached to both the plunger and an inlet manifold.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: April 9, 2024
    Assignee: Kerr Machine Co.
    Inventors: Mark S. Nowell, Kelcy Jake Foster, Micheal Cole Thomas, Christopher Todd Barnett, Guy J. Lapointe, Brandon Scott Ayres
  • Patent number: 11952990
    Abstract: A fluid end for use with a power end. The fluid end comprises a plurality of fluid end sections positioned adjacent one another. Each section includes a single horizontally positioned bore. A plunger is installed within the bore and includes a fluid passageway. Low-pressure fluid enters the bore through the plunger and high-pressure fluid exits the fluid end through an outlet valve installed within the bore. The intake of low-pressure fluid within the fluid end section is regulated by an inlet valve installed within the plunger. Low-pressure fluid enters the plunger through an inlet component attached to both the plunger and an inlet manifold.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: April 9, 2024
    Assignee: Kerr Machine Co.
    Inventors: Mark S. Nowell, Kelcy Jake Foster, Micheal Cole Thomas, Christopher Todd Barnett, Guy J. Lapointe, Brandon Scott Ayres
  • Patent number: 11939430
    Abstract: Polyphosphate compositions are produced by a process that includes the steps of continuously introducing a phosphate compound into a polymerization vessel, polymerizing the phosphate compound at a temperature of 250-450° C. for a time period sufficient to form the polyphosphate composition, and continuously discharging the polyphosphate composition from the polymerization vessel. The phosphate compound can be fed to the polymerization vessel in the form of an aqueous slurry containing 5-50 wt. % of the phosphate compound. Resulting polyphosphate compositions often contain at least 8 wt. % of a polyphosphate and less than 35 wt. % of the phosphate compound.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: March 26, 2024
    Assignee: J.M. Huber Corporation
    Inventors: Yue Liu, Aleksey Isarov, Robin Brumby Helms, Yann Charlotte Bourgeois, James Scott Thomas, Christopher Lamar Duck, Patrick Christopher Farrell
  • Publication number: 20240068455
    Abstract: A fluid end for use with a power end. The fluid end comprises a plurality of fluid end sections positioned adjacent one another. Each section includes a single horizontally positioned bore. A plunger is installed within the bore and includes a fluid passageway. Low-pressure fluid enters the bore through the plunger and high-pressure fluid exits the fluid end through an outlet valve installed within the bore. The intake of low-pressure fluid within the fluid end section is regulated by an inlet valve installed within the plunger. Low-pressure fluid enters the plunger through an inlet component attached to both the plunger and an inlet manifold.
    Type: Application
    Filed: November 8, 2023
    Publication date: February 29, 2024
    Inventors: Mark S. Nowell, Kelcy Jake Foster, Micheal Cole Thomas, Christopher Todd Barnett, Guy J. Lapointe, Brandon Scott Ayres
  • Patent number: 11827555
    Abstract: An optical fiber forming apparatus comprises: a draw furnace comprising: (i) a muffle with an inner surface, (ii) an axial opening below the muffle, the inner surface of the muffle defining a passageway extending through the axial opening, and (iii) an upper inlet into the passageway; and a tube that extends into the passageway of the draw furnace above the axial opening, the tube having (i) an outer surface and the inner surface of the muffle surrounds the outer surface of the tube with a space separating the outer surface of the tube from the inner surface of the muffle, (ii) an inner surface that defines a second passageway extending through the tube, (iii) an inlet into the second passageway of the tube, (iii) an outlet out of the second passageway of the tube.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: November 28, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Erling Richard Anderson, Tammy Michelle Hoffmann, Nikolaos Pantelis Kladias, Robert Clark Moore, Christopher Scott Thomas
  • Patent number: 11753327
    Abstract: Methods, apparatuses and systems of manufacturing an optical fiber are disclosed herein. The methods may include heating an optical preform in a draw furnace, drawing an optical fiber from the optical preform, cooling the optical fiber with a slow cooling device, and annealing the optical fiber by passing the optical fiber through an RF plasma heating apparatus.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: September 12, 2023
    Assignee: Corning Incorporated
    Inventors: Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Patent number: 11667558
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 11621147
    Abstract: A system, having: an RF power source; an RF matching network electrically coupled to the RF power source; an impedance matching circuit electrically coupled to the RF matching network, wherein the impedance matching circuit has a first adjustable capacitor connected in series with the RF matching network and a second adjustable capacitor connected in parallel with the first capacitor; and an inductive process load electrically coupled to the impedance matching circuit.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: April 4, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Carl William Almgren, Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Patent number: 11554979
    Abstract: A system for processing optical fiber includes a draw furnace, a fiber conveyance pathway extending between an upstream end positioned at the draw furnace and a downstream end positioned opposite the upstream end, where optical fiber is conveyed along the fiber conveyance pathway from the upstream end to the downstream end in a fiber conveyance direction, a muffle in communication with the draw furnace and positioned downstream of the draw furnace, a second cooling device annularly surrounding the fiber conveyance pathway downstream from the draw furnace, the second cooling device including one or more second cooling device heating elements and a first cooling device positioned between the draw furnace and the second cooling device, wherein the first cooling device directs a fluid to contact the optical fiber.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: January 17, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Nikolaos Pantelis Kladias, Robert Clark Moore, Jason Roy Pace, Christopher Scott Thomas, Bryan William Wakefield, Chunfeng Zhou
  • Publication number: 20220098085
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20210384010
    Abstract: A system, having: an RF power source; an RF matching network electrically coupled to the RF power source; an impedance matching circuit electrically coupled to the RF matching network, wherein the impedance matching circuit has a first adjustable capacitor connected in series with the RF matching network and a second adjustable capacitor connected in parallel with the first capacitor; and an inductive process load electrically coupled to the impedance matching circuit.
    Type: Application
    Filed: January 22, 2021
    Publication date: December 9, 2021
    Inventors: Carl William Almgren, Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Publication number: 20210355018
    Abstract: An optical fiber forming apparatus comprises: a draw furnace comprising: (i) a muffle with an inner surface, (ii) an axial opening below the muffle, the inner surface of the muffle defining a passageway extending through the axial opening, and (iii) an upper inlet into the passageway; and a tube that extends into the passageway of the draw furnace above the axial opening, the tube having (i) an outer surface and the inner surface of the muffle surrounds the outer surface of the tube with a space separating the outer surface of the tube from the inner surface of the muffle, (ii) an inner surface that defines a second passageway extending through the tube, (iii) an inlet into the second passageway of the tube, (iii) an outlet out of the second passageway of the tube.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 18, 2021
    Inventors: Erling Richard Anderson, Tammy Michelle Hoffmann, Nikolaos Pantelis Kladias, Robert Clark Moore, Christopher Scott Thomas
  • Patent number: 11103825
    Abstract: A method of capturing soot includes the steps: combusting a first precursor in a burner to produce a soot stream, the soot stream comprising soot and exiting the burner at an outlet; and directing a capture medium to the soot stream, the capture medium contacting the soot in an impact region, the soot having a temperature greater than 50° C. in the impact region.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 31, 2021
    Assignee: Corning Incorporated
    Inventors: Curtis Robert Fekety, Thomas Richard Chapman, Douglas Hull Jennings, Nicolas LeBlond, He Jing, Christopher Scott Thomas
  • Publication number: 20210179477
    Abstract: A system for processing optical fiber includes a draw furnace, a fiber conveyance pathway extending between an upstream end positioned at the draw furnace and a downstream end positioned opposite the upstream end, where optical fiber is conveyed along the fiber conveyance pathway from the upstream end to the downstream end in a fiber conveyance direction, a muffle in communication with the draw furnace and positioned downstream of the draw furnace, a second cooling device annularly surrounding the fiber conveyance pathway downstream from the draw furnace, the second cooling device including one or more second cooling device heating elements and a first cooling device positioned between the draw furnace and the second cooling device, wherein the first cooling device directs a fluid to contact the optical fiber.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 17, 2021
    Inventors: Steven Akin Dunwoody, Nikolaos Pantelis Kladias, Robert Clark Moore, Jason Roy Pace, Christopher Scott Thomas, Bryan William Wakefield, Chunfeng Zhou
  • Publication number: 20200399163
    Abstract: Methods, apparatuses and systems of manufacturing an optical fiber are disclosed herein. The methods may include heating an optical preform in a draw furnace, drawing an optical fiber from the optical preform, cooling the optical fiber with a slow cooling device, and annealing the optical fiber by passing the optical fiber through an RF plasma heating apparatus.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Inventors: Daniel Robert Boughton, Kenneth Edward Hrdina, Stefan Wolfgang Kramel, Christopher Scott Thomas
  • Publication number: 20200148579
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 10562804
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20200038796
    Abstract: A method of capturing soot includes the steps: combusting a first precursor in a burner to produce a soot stream, the soot stream comprising soot and exiting the burner at an outlet; and directing a capture medium to the soot stream, the capture medium contacting the soot in an impact region, the soot having a temperature greater than 50° C. in the impact region.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 6, 2020
    Inventors: Curtis Robert Fekety, Thomas Richard Chapman, Douglas Hull Jennings, Nicolas LeBlond, He Jing, Christopher Scott Thomas